Design and synthesis of scalable quantum programs
- URL: http://arxiv.org/abs/2412.07372v2
- Date: Wed, 22 Jan 2025 21:49:30 GMT
- Title: Design and synthesis of scalable quantum programs
- Authors: Tomer Goldfriend, Israel Reichental, Amir Naveh, Lior Gazit, Nadav Yoran, Ravid Alon, Shmuel Ur, Shahak Lahav, Eyal Cornfeld, Avi Elazari, Peleg Emanuel, Dor Harpaz, Tal Michaeli, Nati Erez, Lior Preminger, Roman Shapira, Erik Michael Garcell, Or Samimi, Sara Kisch, Gil Hallel, Gilad Kishony, Vincent van Wingerden, Nathaniel A. Rosenbloom, Ori Opher, Matan Vax, Ariel Smoler, Tamuz Danzig, Eden Schirman, Guy Sella, Ron Cohen, Roi Garfunkel, Tali Cohn, Hanan Rosemarin, Ron Hass, Klem Jankiewicz, Karam Gharra, Ori Roth, Barak Azar, Shahaf Asban, Natalia Linkov, Dror Segman, Ohad Sahar, Niv Davidson, Nir Minerbi, Yehuda Naveh,
- Abstract summary: We present a scalable, robust approach to creating quantum programs of arbitrary size and complexity.
The quantum program is expressed in terms of a high-level model together with constraints and objectives on the final program.
The technology adapts electronic design automation methods to quantum computing, finding feasible implementations in a virtually unlimited functional space.
- Score: 0.8007726207322294
- License:
- Abstract: We present a scalable, robust approach to creating quantum programs of arbitrary size and complexity. The approach is based on the true abstraction of the problem. The quantum program is expressed in terms of a high-level model together with constraints and objectives on the final program. Advanced synthesis algorithms transform the model into a low-level quantum program that meets the user's specification and is directed at a stipulated hardware. This separation of description from implementation is essential for scale. The technology adapts electronic design automation methods to quantum computing, finding feasible implementations in a virtually unlimited functional space. The results show clear superiority over the compilation and transpilation methods used today. We expect that this technological approach will take over and prevail as quantum software become more demanding, complex, and essential.
Related papers
- Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects [0.0]
In this survey, we explore the feasibility of an integrated design and optimization scheme that spans from the algorithmic level to quantum hardware, combining the steps of logic circuit design and compilation optimization.
Leveraging the exceptional cognitive and learning capabilities of AI algorithms, one can reduce manual design costs, enhance the precision and efficiency of execution, and facilitate the implementation and validation of the superiority of quantum algorithms on hardware.
arXiv Detail & Related papers (2024-06-30T15:50:10Z) - An Abstraction Hierarchy Toward Productive Quantum Programming [0.3640881838485995]
We propose an abstraction hierarchy to support quantum software engineering.
We discuss the consequences of overlaps across the programming, execution, and hardware models found in current technologies.
While our work points to concrete conceptual challenges and gaps in quantum programming, our primary thesis is that progress hinges on thinking about the abstraction hierarchy holistically.
arXiv Detail & Related papers (2024-05-22T18:48:36Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Demonstration of a Hardware-Independent Toolkit for Automated Quantum
Subcircuit Synthesis [2.828466685313335]
This article describes an automated quantum-software toolkit for synthesis, compilation, and optimization.
It transforms classically-specified, irreversible functions into both technology-independent and technology-dependent quantum circuits.
We describe and analyze the toolkit's application to three situations -- quantum read-only memories, quantum random number generators, and quantum oracles.
arXiv Detail & Related papers (2023-09-02T21:46:38Z) - Symbolic quantum programming for supporting applications of quantum
computing technologies [0.0]
The main focus of this paper is on quantum computing technologies, as they can in the most direct way benefit from developing tools.
We deliver a short survey of the most popular approaches in the field of quantum software development and we aim at pointing their strengths and weaknesses.
Next, we describe a software architecture and its preliminary implementation supporting the development of quantum programs using symbolic approach.
arXiv Detail & Related papers (2023-02-18T18:30:00Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Modularized and scalable compilation for quantum program in double
quantum dots [0.0]
We train the Ansatz circuit and exemplarily realize high-fidelity compilation of a series of universal quantum gates for singlet-triplet qubits in semiconductor double quantum dots.
Our work constitutes an important stepping-stone for exploiting the potential of this physical resource for advanced and complicated quantum algorithms.
arXiv Detail & Related papers (2022-11-10T02:32:39Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.