論文の概要: A Spectral Framework for Tracking Communities in Evolving Networks
- arxiv url: http://arxiv.org/abs/2412.07378v1
- Date: Tue, 10 Dec 2024 10:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:22.865028
- Title: A Spectral Framework for Tracking Communities in Evolving Networks
- Title(参考訳): 進化するネットワークにおけるコミュニティ追跡のためのスペクトルフレームワーク
- Authors: Jacob Hume, Laura Balzano,
- Abstract要約: 低ランクな静的なコミュニティ検出問題の近似を改良した。
Grassmannの階層型コミュニティ検出スキームを学習し、そのデータに最もよく適合する。
- 参考スコア(独自算出の注目度): 6.21540494241516
- License:
- Abstract: Discovering and tracking communities in time-varying networks is an important task in network science, motivated by applications in fields ranging from neuroscience to sociology. In this work, we characterize the celebrated family of spectral methods for static clustering in terms of the low-rank approximation of high-dimensional node embeddings. From this perspective, it becomes natural to view the evolving community detection problem as one of subspace tracking on the Grassmann manifold. While the resulting optimization problem is nonconvex, we adopt a block majorize-minimize Riemannian optimization scheme to learn the Grassmann geodesic which best fits the data. Our framework generalizes any static spectral community detection approach and leads to algorithms achieving favorable performance on synthetic and real temporal networks, including those that are weighted, signed, directed, mixed-membership, multiview, hierarchical, cocommunity-structured, bipartite, or some combination thereof. We demonstrate how to specifically cast a wide variety of methods into our framework, and demonstrate greatly improved dynamic community detection results in all cases.
- Abstract(参考訳): 時間変動ネットワークにおけるコミュニティの発見と追跡はネットワーク科学において重要な課題であり、神経科学から社会学まで様々な分野の応用が動機となっている。
本研究では,高次元ノード埋め込みの低ランク近似の観点から,静的クラスタリングのための有望なスペクトル手法の族を特徴づける。
この観点から、進化するコミュニティ検出問題をグラスマン多様体上の部分空間追跡の1つとして見るのは自然である。
結果の最適化問題は非凸であるが、データに最も適合するグラスマン測地学を学ぶためにリーマン最適化のブロックを最小化する。
本フレームワークは,任意の静的スペクトルコミュニティ検出手法を一般化し,重み付き,符号付き,指示付き,混合メンバシップ,マルチビュー,階層型,共分散構造,二部構造,あるいはそれらの組み合わせを含む,合成および実時間ネットワーク上で好適な性能を達成するアルゴリズムを実現する。
我々は,フレームワークに多種多様なメソッドを具体的に投入する方法を実証し,すべてのケースにおいて動的コミュニティ検出結果を大幅に改善することを示した。
関連論文リスト
- Sifting out communities in large sparse networks [2.666294200266662]
大規模ネットワークにおけるクラスタリングの結果の質を定量化するための直感的な客観的関数を導入する。
この領域に特に適したコミュニティを特定するために,2段階の手法を用いる。
数万のノードからなる大規模ネットワークにおける複雑な遺伝的相互作用を同定する。
論文 参考訳(メタデータ) (2024-05-01T18:57:41Z) - Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant [1.8606770727950463]
我々は,マルコフ連鎖のグラフ分割問題に対処するGNNアーキテクチャをいくつか提案する。
このアプローチは、提案されたパーティショニングがケメニー定数をどの程度変更するかを最小化することを目的としている。
線形層を持つグラフSAGEベースのGNNが、この文脈でより大きく、より表現力に富んだアテンションベースモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-22T17:19:50Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - MGTCOM: Community Detection in Multimodal Graphs [0.34376560669160383]
MGTCOMは、ネットワーク埋め込み、コミュニティ、およびタンデム内のコミュニティの数を最適化するエンドツーエンドフレームワークである。
我々の手法は最先端技術に対して競争力があり、帰納的推論ではよく機能する。
論文 参考訳(メタデータ) (2022-11-10T16:11:03Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
本稿では,階層型グラフ再帰ネットワーク(HGRN)と呼ばれる新しいネットワーク構造を提案する。
以上の技術に基づいて,Soft-HGRNと呼ばれる値に基づくMADRLアルゴリズムと,SAC-HRGNというアクタクリティカルな変種を提案する。
論文 参考訳(メタデータ) (2021-09-05T09:51:25Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z) - Network Clustering Via Kernel-ARMA Modeling and the Grassmannian The
Brain-Network Case [6.78543866474958]
本稿では,時系列データにアノテートしたノードを持つネットワークを対象としたクラスタリングフレームワークを提案する。
このフレームワークは、状態クラスタリング、状態内のノードクラスタリング、サブネットワーク-状態系列の識別/追跡など、あらゆるタイプのネットワーククラスタリング問題に対処する。
論文 参考訳(メタデータ) (2020-02-18T19:48:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。