Clinical Inspired MRI Lesion Segmentation
- URL: http://arxiv.org/abs/2502.16032v1
- Date: Sat, 22 Feb 2025 01:37:35 GMT
- Title: Clinical Inspired MRI Lesion Segmentation
- Authors: Lijun Yan, Churan Wang, Fangwei Zhong, Yizhou Wang,
- Abstract summary: We propose a residual fusion method to learn subsequence representation for MRI lesion segmentation.<n>Specifically, we iteratively and adaptively fuse features from pre- and post-contrast sequences at multiple resolutions.<n>Our method achieves state-of-the-art performances on BraTS2023 dataset for brain tumor segmentation and our in-house breast MRI dataset for breast lesion segmentation.
- Score: 18.265186077850874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is a potent diagnostic tool for detecting pathological tissues in various diseases. Different MRI sequences have different contrast mechanisms and sensitivities for different types of lesions, which pose challenges to accurate and consistent lesion segmentation. In clinical practice, radiologists commonly use the sub-sequence feature, i.e. the difference between post contrast-enhanced T1-weighted (post) and pre-contrast-enhanced (pre) sequences, to locate lesions. Inspired by this, we propose a residual fusion method to learn subsequence representation for MRI lesion segmentation. Specifically, we iteratively and adaptively fuse features from pre- and post-contrast sequences at multiple resolutions, using dynamic weights to achieve optimal fusion and address diverse lesion enhancement patterns. Our method achieves state-of-the-art performances on BraTS2023 dataset for brain tumor segmentation and our in-house breast MRI dataset for breast lesion segmentation. Our method is clinically inspired and has the potential to facilitate lesion segmentation in various applications.
Related papers
- Task-oriented Uncertainty Collaborative Learning for Label-Efficient Brain Tumor Segmentation [6.722672686635773]
Multi-contrast magnetic resonance imaging (MRI) plays a vital role in brain tumor segmentation and diagnosis.
Existing methods still face the challenges of multi-level specificity perception across different contrasts.
We propose a Task-oriented Uncertainty Collaborative Learning framework for multi-contrast MRI segmentation.
arXiv Detail & Related papers (2025-03-07T18:44:53Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.<n>Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) [9.082208613256295]
We present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023.
The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided.
arXiv Detail & Related papers (2023-05-15T20:49:58Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae.
It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression.
We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published model.
arXiv Detail & Related papers (2022-06-27T10:31:03Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data [2.2515303891664358]
Tumor segmentation in multimodal medical images has seen a growing trend towards deep learning based methods.
We propose a simultaneous co-segmentation method, which enables multimodal feature learning through modality-specific encoder and decoder branches.
We demonstrate the effectiveness of our approach on public soft tissue sarcoma data, which comprises MRI (T1 and T2 sequence) and PET/CT scans.
arXiv Detail & Related papers (2020-08-28T09:15:42Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
arXiv Detail & Related papers (2020-01-08T10:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.