論文の概要: Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models
- arxiv url: http://arxiv.org/abs/2412.07435v3
- Date: Mon, 22 Sep 2025 14:12:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-23 14:36:44.659153
- Title: Parallel Simulation for Log-concave Sampling and Score-based Diffusion Models
- Title(参考訳): 対数凹型サンプリングとスコアベース拡散モデルの並列シミュレーション
- Authors: Huanjian Zhou, Masashi Sugiyama,
- Abstract要約: 本稿では,次元$d$の適応的複雑性依存性を改善する並列サンプリング手法を提案する。
我々の手法は科学計算による並列シミュレーション技術に基づいている。
- 参考スコア(独自算出の注目度): 55.07411490538404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling from high-dimensional probability distributions is fundamental in machine learning and statistics. As datasets grow larger, computational efficiency becomes increasingly important, particularly in reducing adaptive complexity, namely the number of sequential rounds required for sampling algorithms. While recent works have introduced several parallelizable techniques, they often exhibit suboptimal convergence rates and remain significantly weaker than the latest lower bounds for log-concave sampling. To address this, we propose a novel parallel sampling method that improves adaptive complexity dependence on dimension $d$ reducing it from $\widetilde{\mathcal{O}}(\log^2 d)$ to $\widetilde{\mathcal{O}}(\log d)$. which is even optimal for log-concave sampling with some specific adaptive complexity. Our approach builds on parallel simulation techniques from scientific computing.
- Abstract(参考訳): 高次元確率分布からのサンプリングは、機械学習と統計学において基本的なものである。
データセットが大きくなるにつれて、特にアルゴリズムのサンプリングに必要な逐次ラウンドの数など、適応的な複雑さを減らすために、計算効率がますます重要になる。
最近の研究はいくつかの並列化可能な手法を導入しているが、それらはしばしば最適下限収束率を示し、対数凹面サンプリングの最新の下限よりも著しく弱いままである。
これを解決するために, 次元$d$を$\widetilde{\mathcal{O}}(\log^2 d)$から$\widetilde{\mathcal{O}}(\log d)$に還元する並列サンプリング手法を提案する。
これは、特定の適応的な複雑さを持つログコンケーブサンプリングにも最適です。
我々の手法は科学計算による並列シミュレーション技術に基づいている。
関連論文リスト
- Mean-Field Simulation-Based Inference for Cosmological Initial Conditions [4.520518890664213]
フーリエ空間における対角ガウス場に対する初期物質密度場の後方分布をモデル化したベイズ場再構成法を提案する。
トレーニングとサンプリングは非常に速い(トレーニング: $sim 1, Mathrmh$ on a GPU, sample: $lesssim 3, Mathrms$ for 1000 sample at resolution $1283$)。
論文 参考訳(メタデータ) (2024-10-21T09:23:50Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Accelerating Diffusion Models with Parallel Sampling: Inference at Sub-Linear Time Complexity [11.71206628091551]
拡散モデルは、訓練と評価に費用がかかるため、拡散モデルの推論コストを削減することが大きな目標である。
並列サンプリング手法であるHh2024parallelを用いて拡散モデルを高速化する実験的な成功に触発されて,サンプリングプロセスを各ブロック内に並列化可能なPicard繰り返しを持つ$mathcalO(1)$ブロックに分割することを提案する。
我々の結果は、高速で効率的な高次元データサンプリングの可能性に光を当てた。
論文 参考訳(メタデータ) (2024-05-24T23:59:41Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
本稿では,時間的モデリングのための一般的なディープラーニングアルゴリズムの代替として,安価に提案する。
我々の手法は最先端の解法と比較して非常に競争力がある。
論文 参考訳(メタデータ) (2023-04-19T13:50:13Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。