論文の概要: Accuracy and Performance Evaluation of Quantum, Classical and Hybrid Solvers for the Max-Cut Problem
- arxiv url: http://arxiv.org/abs/2412.07460v1
- Date: Tue, 10 Dec 2024 12:28:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:35:51.553225
- Title: Accuracy and Performance Evaluation of Quantum, Classical and Hybrid Solvers for the Max-Cut Problem
- Title(参考訳): Max-Cut問題に対する量子・古典・ハイブリッド解の精度と性能評価
- Authors: Jaka Vodeb, Vid Eržen, Timotej Hrga, Janez Povh,
- Abstract要約: 本稿では,NP-hard Max-Cut 問題と QUBO 問題に対する量子,古典,ハイブリッドの解法の性能について検討する。
我々は,新しい高速アニーリングD-Wave量子処理ユニット(QPU)とD-Wave Hybrid solverを,最先端の古典的アニーリングアルゴリズム(SA)と東芝のシミュレート分岐機(SBM)と比較した。
その結果,グローバルな最適解法が知られている小さなケースでは,ハイブリッドソルバとSAアルゴリズムが一貫してグローバルな最適解法を実現し,QPUを上回っていることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper investigates the performance of quantum, classical, and hybrid solvers on the NP-hard Max-Cut and QUBO problems, examining their solution quality relative to the global optima and their computational efficiency. We benchmark the new fast annealing D-Wave quantum processing unit (QPU) and D-Wave Hybrid solver against the state-of-the-art classical simulated annealing algorithm (SA) and Toshiba's simulated bifurcation machine (SBM). Our study leverages three datasets encompassing 139 instances of the Max-Cut problem with sizes ranging from 100 to 10,000 nodes. For instances below 251 nodes, global optima are known and reported, while for larger instances, we utilize the best-known solutions from the literature. Our findings reveal that for the smaller instances where the global optimum is known, the Hybrid solver and SA algorithm consistently achieve the global optimum, outperforming the QPU. For larger instances where global optima are unknown, we observe that the SBM and the slower variant of SA deliver competitive solution quality, while the Hybrid solver and the faster variant of SA performed noticeably worse. Although computing time varies due to differing underlying hardware, the Hybrid solver and the SBM demonstrate both efficient computation times, while for SA reduction in computation time can be achieved at the expense of solution quality.
- Abstract(参考訳): 本稿では,NP-hard Max-Cut 問題と QUBO 問題に対する量子,古典,ハイブリッドの解法の性能について検討し,その解の最適性とその計算効率について検討する。
我々は,新しい高速アニーリングD-Wave量子処理ユニット (QPU) とD-Wave Hybrid solver を,最先端の古典的アニーリングアルゴリズム (SA) と東芝のシミュレート分岐器 (SBM) と比較した。
本研究は,100ノードから10,000ノード規模のMax-Cut問題の129インスタンスを含む3つのデータセットを活用する。
251ノード以下のインスタンスでは、グローバルオプティマが知られ、報告され、大きなインスタンスでは、文献から最もよく知られたソリューションが利用される。
その結果,グローバルな最適解法が知られている小さなケースでは,ハイブリッドソルバとSAアルゴリズムが一貫してグローバルな最適解法を実現し,QPUを上回っていることがわかった。
グローバル最適値が不明な大規模の場合, SBM と SBM の低変量により, 競合解の質が向上する一方, ハイブリッド・ソルバとより高速な SA は著しく低下した。
計算時間はハードウェアの違いにより異なるが、Hybrid SolutionrとSBMはどちらも効率的な計算時間を示し、SAの削減はソリューションの品質を犠牲にして達成できる。
関連論文リスト
- Increasing the Hardness of Posiform Planting Using Random QUBOs for Programmable Quantum Annealer Benchmarking [1.6385815610837167]
我々は,多数の小さな離散係数スピングラスイジングモデルを融合させることにより,ポジフォーム植込みQUBOを計算的に困難にすることを検討する。
3つのD-Wave超伝導量子アニーリングプロセッサの性能をベンチマークする。
D-Wave QPUの地中サンプリング成功率は、我々が採用するランダムQUBOのサイズに対して変化しないことがわかった。
論文 参考訳(メタデータ) (2024-11-06T02:46:33Z) - Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms [0.0]
我々は,ハイブリッドシステムにおける時間的複雑性,スケーラビリティ,通信オーバーヘッドを分析する理論的モデルを構築した。
小型のMax-Cutインスタンス上でのQAOAの性能を評価する。
論文 参考訳(メタデータ) (2024-10-21T04:10:54Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems [0.0]
ゲートモデル量子コンピュータにおける二項最適化問題に対する包括的量子解法を提案する。
最大127キュービットの問題の正しい解を一貫して提供する。
我々は、古典的に非自明な2進最適化問題に対して、IBM量子コンピュータ上でこの解法をベンチマークする。
論文 参考訳(メタデータ) (2024-06-03T19:08:01Z) - Quantum Computing for MIMO Beam Selection Problem: Model and Optical
Experimental Solution [4.990043560632826]
本研究は, 実用的な5G演算への大きな期待を示し, 通信における計算困難問題の解法における量子コンピューティングの適用を促進する。
大規模マルチインプット・マルチアウトプット(MIMO)は、データレートの向上、信号品質の向上、課題のある環境でのカバレッジ向上などにより、近年広く普及している。
論文 参考訳(メタデータ) (2023-10-19T00:12:20Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
Needle-in-a-Haystack問題は、データセットのサイズに対して最適な条件が極端に不均衡であるときに発生する。
本稿では,従来のベイズ最適化原理に基づくズームメモリに基づく初期化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T23:57:41Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。