論文の概要: Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2410.15626v1
- Date: Mon, 21 Oct 2024 04:10:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:15:58.075885
- Title: Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms
- Title(参考訳): マックスカットのためのハイブリッド量子-HPCソリューション:古典的および量子的アルゴリズムのブリッジング
- Authors: Ishan Patwardhan, Akhil Akkapelli,
- Abstract要約: 我々は,ハイブリッドシステムにおける時間的複雑性,スケーラビリティ,通信オーバーヘッドを分析する理論的モデルを構築した。
小型のMax-Cutインスタンス上でのQAOAの性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research explores the integration of the Quantum Approximate Optimization Algorithm (QAOA) into Hybrid Quantum-HPC systems for solving the Max-Cut problem, comparing its performance with classical algorithms like brute-force search and greedy heuristics. We develop a theoretical model to analyze the time complexity, scalability, and communication overhead in hybrid systems. Using simulations, we evaluate QAOA's performance on small-scale Max-Cut instances, benchmarking its runtime, solution accuracy, and resource utilization. The study also investigates the scalability of QAOA with increasing problem size, offering insights into its potential advantages over classical methods for large-scale combinatorial optimization problems, with implications for future Quantum computing applications in HPC environments.
- Abstract(参考訳): 本研究では,量子近似最適化アルゴリズム(QAOA)をHybrid Quantum-HPCシステムに統合し,その性能をブルートフォース探索やグリードヒューリスティックスといった古典的アルゴリズムと比較する。
我々は,ハイブリッドシステムにおける時間的複雑性,スケーラビリティ,通信オーバーヘッドを解析するための理論的モデルを構築した。
シミュレーションを用いて,大規模Max-Cutインスタンス上でのQAOAの性能を評価する。
また,問題サイズの増加に伴うQAOAのスケーラビリティについても検討し,大規模組合せ最適化問題に対する古典的手法に対する潜在的な優位性について考察し,今後のHPC環境における量子コンピューティングアプリケーションへの影響について考察した。
関連論文リスト
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
量子近似最適化アルゴリズム(QAOA)とその変種は、最適化問題に対処する大きな可能性を示している。
良好な性能を実現するために必要な回路深度は問題固有であり、しばしば現在の量子デバイスの最大容量を超える。
ミキサジェネレータネットワーク (MG-Net) は, 最適ミキサハミルトニアンを動的に定式化するための統合ディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-09-27T12:28:18Z) - A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems [0.0]
量子コンピュータ(QC)を用いた電力系統最適化問題の解法フレームワークを提案する。
我々の指導的応用は、DC Optimal Power Flowを解くために訓練されたニューラルネットワークの最適送信切替と検証である。
論文 参考訳(メタデータ) (2024-04-16T16:11:56Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
量子近似最適化(Quantum Approximate Optimization, QAOA)は、Max-Cutの問題を効率的に解く可能性において際立っている。
我々は,GNNをウォームスタート手法として,グラフニューラルネットワーク(GNN)を用いてQAOAを最適化する。
以上の結果から,量子コンピューティングにおけるGNNのQAOA性能向上の可能性が示唆され,量子古典的ハイブリッドコンピューティングへの新たな道が開かれた。
論文 参考訳(メタデータ) (2024-03-05T20:23:25Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
量子近似最適化アルゴリズム(QAOA)は、近似を用いて最適化問題を解くために用いられる一般的な量子アルゴリズムの1つである。
しかし、仮想量子コンピュータ上でのQAOAの実行は、最適化問題を解くのに遅いシミュレーション速度に悩まされている。
本稿では,QAOAの量子演算を数学的に最適化し,QCSを高速化する手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T06:08:57Z) - Hybrid Quantum-Classical Multilevel Approach for Maximum Cuts on Graphs [1.7720089167719628]
我々は、Max-Cutの大規模インスタンスを解決するために、スケーラブルなハイブリッドマルチレベルアプローチを導入する。
フレームワークでのQAOAの使用は、古典的なアプローチに匹敵するものであることを示す。
論文 参考訳(メタデータ) (2023-09-15T23:54:46Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit
Commitment [2.8060379263058794]
ユニットコミットと呼ばれる電力系統最適化問題に対して,ハイブリッド量子古典アルゴリズムを定式化し,適用する。
提案アルゴリズムは、量子近似最適化アルゴリズム(QAOA)を古典最小値で拡張し、混合二元最適化をサポートする。
提案手法は,400個の発電ユニット未満のシミュレーション単位コミットに対して,古典的解法が有効であることを示す。
論文 参考訳(メタデータ) (2021-10-25T03:37:34Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。