論文の概要: Real-time Sign Language Recognition Using MobileNetV2 and Transfer Learning
- arxiv url: http://arxiv.org/abs/2412.07486v1
- Date: Tue, 10 Dec 2024 13:08:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:36:15.106175
- Title: Real-time Sign Language Recognition Using MobileNetV2 and Transfer Learning
- Title(参考訳): MobileNetV2と転送学習を用いたリアルタイム手話認識
- Authors: Smruti Jagtap, Kanika Jadhav, Rushikesh Temkar, Minal Deshmukh,
- Abstract要約: ISL信号を音声やテキストに変換するための効率的な技術はまだ存在しない。
我々のゴールは、畳み込みニューラルネットワーク(CNN)の助けを借りて、信頼できる手話認識システムを構築することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The hearing-impaired community in India deserves the access to tools that help them communicate, however, there is limited known technology solutions that make use of Indian Sign Language (ISL) at present. Even though there are many ISL users, ISL cannot access social and education arenas because there is not yet an efficient technology to convert the ISL signal into speech or text. We initiated this initiative owing to the rising demand for products and technologies that are inclusive and help ISL, filling the gap of communication for the ones with hearing disability. Our goal is to build an reliable sign language recognition system with the help of Convolutional Neural Networks (CNN) to . By expanding communication access, we aspire toward better educational opportunities and a more inclusive society for hearing impaired people in India.
- Abstract(参考訳): インドの聴覚障害者コミュニティは、彼らのコミュニケーションを支援するツールへのアクセスにふさわしいが、現在、インド手話(ISL)を利用する既知の技術ソリューションは限られている。
ISLには多くのISLユーザーがいるが、ISLの信号が音声やテキストに変換される効率的な技術がまだ存在しないため、ISLは社会や教育の領域にはアクセスできない。
難聴者のコミュニケーションのギャップを埋めるため、包括的でISLを支援する製品や技術への需要が高まり、このイニシアチブを開始した。
私たちのゴールは、CNN(Convolutional Neural Networks)の助けを借りて、信頼できる手話認識システムを構築することです。
コミュニケーションアクセスの拡大により、インドの聴覚障害者のためのより良い教育機会とより包括的な社会を目指しています。
関連論文リスト
- Enhanced Sign Language Translation between American Sign Language (ASL) and Indian Sign Language (ISL) Using LLMs [0.2678472239880052]
我々は、アメリカ手話の利用者と話し言葉とインド手話(ISL)の利用者の間に橋渡しを提供することを目標とする研究を思いついた。
このフレームワークは、ジェスチャーの可変性の自動処理や、ASLとISLの言語的違いを克服するといった重要な課題に対処する。
論文 参考訳(メタデータ) (2024-11-19T17:45:12Z) - Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
手話は、難聴者コミュニティにとってコミュニケーションの主要な意味である。
難聴者と聴覚者のコミュニケーションを容易にするために,手話理解(SLU)タスクのシリーズが研究されている。
これらの課題は、多様な視点から手話のトピックを調査し、手話ビデオの効果的な表現を学ぶ上での課題を提起する。
論文 参考訳(メタデータ) (2024-08-16T06:04:25Z) - Training program on sign language: social inclusion through Virtual
Reality in ISENSE project [0.5277756703318045]
ISENSEプロジェクトは、手話を教えるための様々な技術ツールを聴取コミュニティに提案する。
本研究の目的は,VR環境を利用したスペイン語とイタリア語の手話認識アプリケーションを開発することである。
論文 参考訳(メタデータ) (2024-01-15T20:40:46Z) - Mediapipe and CNNs for Real-Time ASL Gesture Recognition [0.1529342790344802]
本稿では,アメリカ手話(ASL)の動きをリアルタイムに識別するシステムについて述べる。
提案手法は,特徴抽出のためのMediapipeライブラリと,ASLジェスチャー分類のための畳み込みニューラルネットワーク(CNN)を利用する。
論文 参考訳(メタデータ) (2023-05-09T09:35:45Z) - Image-based Indian Sign Language Recognition: A Practical Review using
Deep Neural Networks [0.0]
このモデルは、手話をテキストに変換するリアルタイムな単語レベル手話認識システムを開発することを目的としている。
この分析のために、ユーザはWebカメラを使って手の動きの写真を撮らなければならない。
我々のモデルは畳み込みニューラルネットワーク(CNN)を用いて訓練され、画像の認識に使用される。
論文 参考訳(メタデータ) (2023-04-28T09:27:04Z) - Indian Sign Language Recognition Using Mediapipe Holistic [0.0]
インド手話をテキストや音声に変換するために,手話認識のための堅牢なシステムを構築する。
サイン言語に依存した聴覚障害と難聴者のコミュニケーション能力を高めるため、テキスト・ツー・サイン言語パラダイムの作成が不可欠である。
論文 参考訳(メタデータ) (2023-04-20T12:25:47Z) - Audio Self-supervised Learning: A Survey [60.41768569891083]
SSL(Self-Supervised Learning)は、人間のアノテーションを必要とせずに、大規模データから一般的な表現を見つけることを目的としている。
コンピュータビジョンと自然言語処理の分野での成功により、近年では音声処理や音声処理の分野で採用されている。
論文 参考訳(メタデータ) (2022-03-02T15:58:29Z) - All You Need In Sign Language Production [50.3955314892191]
言語認識と生産のサインは、いくつかの重要な課題に対処する必要があります。
本稿では,難聴文化,難聴センター,手話の心理的視点について紹介する。
また、SLPのバックボーンアーキテクチャや手法を簡潔に紹介し、SLPの分類について提案する。
論文 参考訳(メタデータ) (2022-01-05T13:45:09Z) - Sign Language Production: A Review [51.07720650677784]
手話 (Sign Language) は、聴覚障害と聴覚障害のコミュニティで使われるコミュニケーション言語である。
聴覚障害者と聴覚コミュニティのコミュニケーションを容易かつ相互に行うためには、話し言葉を手話に翻訳できる堅牢なシステムを構築することが不可欠です。
そのために、手話認識と生産は、このような双方向システムを作るのに必要な2つの部分です。
論文 参考訳(メタデータ) (2021-03-29T19:38:22Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
手話は聴覚障害者や言語障害者のコミュニケーションに使用される。
また,RGB-D法と組み合わせて最先端の性能を実現することで,Skeletonに基づく音声認識が普及しつつある。
近年のボディポーズ推定用citejin 2020wholeの開発に触発されて,全身キーポイントと特徴に基づく手話認識を提案する。
論文 参考訳(メタデータ) (2021-03-16T03:38:17Z) - Silent Speech Interfaces for Speech Restoration: A Review [59.68902463890532]
サイレント音声インタフェース (SSI) の研究は、重度音声障害の患者に対して、代替的で拡張的なコミュニケーション方法を提供することを目的としている。
SSIは、コミュニケーションを可能にするために、音声生成中に人体によって生成される非音響バイオシグナーに依存している。
現在、ほとんどのSSIは、健康なユーザーのために実験室でのみ検証されている。
論文 参考訳(メタデータ) (2020-09-04T11:05:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。