Collisional scattering of strongly interacting D-band Feshbach molecules in optical lattices
- URL: http://arxiv.org/abs/2412.07496v1
- Date: Tue, 10 Dec 2024 13:23:53 GMT
- Title: Collisional scattering of strongly interacting D-band Feshbach molecules in optical lattices
- Authors: Fansu Wei, Chi-Kin Lai, Yuying Chen, Zhengxi Zhang, Yun Liang, Hongmian Shui, Chen Li, Xiaoji Zhou,
- Abstract summary: This work investigates the collisional scattering of $6rm Li$ molecular Bose-Einstein condensate in the $D$ band of a one-dimensional optical lattice.
We find a clear dependence of the $D$-band lifetimes on the interaction strength within the strongly interacting regime.
The maximum lifetime versus lattice depth is measured to reveal the effects of interactions.
- Score: 5.672975092982067
- License:
- Abstract: The excited bands in optical lattices manifest an important tool for studying quantum simulation and many-body physics, making it crucial to measure high-band scattering dynamics under strong interactions. This work investigates both experimentally and theoretically the collisional scattering of $^{6}\rm Li_2$ molecular Bose-Einstein condensate in the $D$ band of a one-dimensional optical lattice, with interaction strength directly tunable via magnetic Feshbach resonance. We find a clear dependence of the $D$-band lifetimes on the interaction strength within the strongly interacting regime, which arises from the fact that the scattering cross-section is proportional to the square of the scattering length. The maximum lifetime versus lattice depth is measured to reveal the effects of interactions. We also investigate the scattering channels of $D$-band molecules under different interaction levels and develop a reliable two-body scattering rate equation. This work provides insight into the interplay between interaction and the collisional scattering of high-band bosons in optical lattices, paving the way for research into strong correlation effects in high-band lattice systems.
Related papers
- Field-induced quantum interference of inelastic scattering in ultracold atomic collisions [1.460126875361022]
Xploiting quantum interference remains a significant challenge in ultracold inelastic scattering.
We propose a method to enable detectable quantum interference within the two-body loss rate resulting from various inelastic scattering channels.
arXiv Detail & Related papers (2024-12-01T09:36:50Z) - Matter-wave interferometers with trapped strongly interacting Feshbach molecules [3.2284194626041596]
We implement two types of matter-wave interferometers using trapped Bose-condensed Feshbach molecules.
In each case, we focus on investigating interaction effects and their implications for the performance.
arXiv Detail & Related papers (2024-02-07T18:46:41Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Diffraction of strongly interacting molecular Bose-Einstein condensate
from standing wave light pulses [3.7650630333237194]
We study the effects of strong inter-particle interaction on diffraction of a Bose-Einstein condensate of $6Li$ molecules created by pulses of a standing wave.
For short pulses we observe the standard Kapitza-Dirac diffraction, with the contrast of the diffraction pattern strongly reduced for very large interactions.
For longer pulses diffraction shows the characteristic for matter waves impinging on an array of tubes and coherent channeling transport.
arXiv Detail & Related papers (2022-01-05T14:01:08Z) - Experimental observation of the avoided crossing of two $S$-matrix
resonance poles in an ultracold atom collider [0.20391237204597357]
We study the interplay between two scattering poles relating to a shape resonance and a magnetically tunable Feshbach resonance.
We exploit the tunability of the Feshbach resonance to observe a compelling avoided crossing of the poles in their energies.
arXiv Detail & Related papers (2021-03-09T08:01:31Z) - Bosonic Quantum Dynamics Following Colliding Potential Wells [0.0]
We investigate the correlated non-equilibrium quantum dynamics of two bosons confined in two colliding and uniformly accelerated Gaussian wells.
Despite the comparatively weak interaction strengths employed in this work, we identify strong inter-particle correlations by analyzing the corresponding Von Neumann entropy.
arXiv Detail & Related papers (2021-02-02T14:59:08Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.