Matter-wave interferometers with trapped strongly interacting Feshbach molecules
- URL: http://arxiv.org/abs/2402.05092v2
- Date: Tue, 21 May 2024 14:43:56 GMT
- Title: Matter-wave interferometers with trapped strongly interacting Feshbach molecules
- Authors: Chen Li, Qi Liang, Pradyumna Paranjape, RuGway Wu, Jörg Schmiedmayer,
- Abstract summary: We implement two types of matter-wave interferometers using trapped Bose-condensed Feshbach molecules.
In each case, we focus on investigating interaction effects and their implications for the performance.
- Score: 3.2284194626041596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We implement two types of matter-wave interferometers using trapped Bose-condensed Feshbach molecules, from weak to strong interactions. In each case, we focus on investigating interaction effects and their implications for the performance. In the Ramsey-type interferometer where interference between the two motional quantum states in an optical lattice is observed, interparticle interactions are found to induce energy shifts in the states. Consequently, this results in a reduction of the interferometer frequency and introduces a phase shift during the lattice pulses used for state manipulation. Furthermore, nonuniformity leads to dephasing and collisional effects contribute to the degradation of contrast. In the Michelson-type interferometer, where matter waves are spatially split and recombined in a waveguide, interference is observed in the presence of significant interaction, however coherence degrades with increasing interaction strength. Notably, coherence is also observed in thermal clouds, indicating the white-light nature of the implemented Michelson-type interferometer.
Related papers
- Realizing a spatially correlated lattice interferometer [8.81055904289318]
Atom interferometers provide a powerful tool for measuring physical constants and testifying fundamental physics with unprecedented precision.
Here, we report on realizing a Ramsey-Bord'e interferometer of coherent matter waves dressed by a moving optical lattice in the gravity direction.
Our findings agree well with theoretical simulations, paving the way for high-precision interferometry with ultracold atoms.
arXiv Detail & Related papers (2024-06-24T17:54:03Z) - Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Cavity-Mediated Collective Momentum-Exchange Interactions [0.0]
We realize for the first time momentum-exchange interactions in which atoms exchange their momentum states via collective emission and absorption of photons from a common cavity mode.
The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer, which is useful for entanglement generation.
arXiv Detail & Related papers (2023-04-03T23:12:58Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Non-linear Bragg trap interferometer [0.0]
We propose a scheme for trapped atom interferometry using an interacting Bose-Einstein condensate.
The condensate is controlled and spatially split in two confined external momentum modes through a series Bragg pulses.
arXiv Detail & Related papers (2020-12-10T16:27:42Z) - What is a quantum shock wave? [0.0]
We study the dynamics of dispersive quantum shock waves in a one-dimensional Bose gas.
The amplitude of oscillations, i.e., the interference contrast, decreases with the increase of both the temperature of the gas and the interaction strength.
arXiv Detail & Related papers (2020-06-27T09:35:03Z) - Wave-particle duality using the Compton effect [0.0]
We study the consequences of the beam-splitter recoil, during the passage of the photon, over the interference pattern produced by the device.
Fortuitously, the model used to describe the interaction between the idealized beam-splitter and the photon clearly indicates that an interferometer based on Compton's effect could be build to study wave-particle duality.
arXiv Detail & Related papers (2020-05-06T16:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.