A data-driven learned discretization approach in finite volume schemes for hyperbolic conservation laws and varying boundary conditions
- URL: http://arxiv.org/abs/2412.07541v1
- Date: Tue, 10 Dec 2024 14:18:30 GMT
- Title: A data-driven learned discretization approach in finite volume schemes for hyperbolic conservation laws and varying boundary conditions
- Authors: Guillaume de Romémont, Florent Renac, Jorge Nunez, Francisco Chinesta,
- Abstract summary: We present a data-driven finite volume method for solving 1D and 2D hyperbolic partial differential equations.
New ingredients guarantee computational stability, preserve the accuracy of fine-grid solutions, and enhance overall performance.
- Score: 1.4999444543328293
- License:
- Abstract: This paper presents a data-driven finite volume method for solving 1D and 2D hyperbolic partial differential equations. This work builds upon the prior research incorporating a data-driven finite-difference approximation of smooth solutions of scalar conservation laws, where optimal coefficients of neural networks approximating space derivatives are learned based on accurate, but cumbersome solutions to these equations. We extend this approach to flux-limited finite volume schemes for hyperbolic scalar and systems of conservation laws. We also train the discretization to efficiently capture discontinuous solutions with shock and contact waves, as well as to the application of boundary conditions. The learning procedure of the data-driven model is extended through the definition of a new loss, paddings and adequate database. These new ingredients guarantee computational stability, preserve the accuracy of fine-grid solutions, and enhance overall performance. Numerical experiments using test cases from the literature in both one- and two-dimensional spaces demonstrate that the learned model accurately reproduces fine-grid results on very coarse meshes.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Discovery and inversion of the viscoelastic wave equation in inhomogeneous media [3.6864706261549127]
Current sparse regression methods may identify inaccurate equations on sparse and noisy datasets.
We propose a hybrid framework that combines two alternating direction optimization phases: discovery and embedding.
The proposed method exhibits excellent robustness and accuracy, even when faced with high levels of noise.
arXiv Detail & Related papers (2024-09-27T01:05:45Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - A conservative hybrid physics-informed neural network method for
Maxwell-Amp\`{e}re-Nernst-Planck equations [22.81295238376119]
The proposed hybrid algorithm provides an automated means to determine a proper approximation for dummy variables.
The original method is validated for 2-dimensional problems.
The proposed method can be readily generalised to cases with one spatial dimension.
arXiv Detail & Related papers (2023-12-10T13:58:41Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Deep-learning of Parametric Partial Differential Equations from Sparse
and Noisy Data [2.4431531175170362]
In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously.
A trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data.
Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library.
A two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients.
arXiv Detail & Related papers (2020-05-16T09:09:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.