論文の概要: A clustering aggregation algorithm on neutral-atoms and annealing quantum processors
- arxiv url: http://arxiv.org/abs/2412.07558v1
- Date: Tue, 10 Dec 2024 14:48:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:35:24.770673
- Title: A clustering aggregation algorithm on neutral-atoms and annealing quantum processors
- Title(参考訳): 中性原子とアニール量子プロセッサのクラスタリング集約アルゴリズム
- Authors: Riccardo Scotti, Gabriella Bettonte, Antonio Costantini, Sara Marzella, Daniele Ottaviani, Stefano Lodi,
- Abstract要約: 本研究では、クラスタリングアグリゲーションを実行するためのハイブリッド量子古典アルゴリズムを提案する。
中立原子の量子コンピュータと量子アニールのために設計された。
発見は、ハイブリッド量子古典パイプラインの将来的な発展の可能性を示唆している。
- 参考スコア(独自算出の注目度): 0.44531072184246007
- License:
- Abstract: This work presents a hybrid quantum-classical algorithm to perform clustering aggregation, designed for neutral-atoms quantum computers and quantum annealers. Clustering aggregation is a technique that mitigates the weaknesses of clustering algorithms, an important class of data science methods for partitioning datasets, and is widely employed in many real-world applications. By expressing the clustering aggregation problem instances as a Maximum Independent Set (MIS) problem and as a Quadratic Unconstrained Binary Optimization (QUBO) problem, it was possible to solve them by leveraging the potential of Pasqal's Fresnel (neutral-atoms processor) and D-Wave's Advantage QPU (quantum annealer). Additionally, the designed clustering aggregation algorithm was first validated on a Fresnel emulator based on QuTiP and later on an emulator of the same machine based on tensor networks, provided by Pasqal. The results revealed technical limitations, such as the difficulty of adding additional constraints on the employed neutral-atoms platform and the need for better metrics to measure the quality of the produced clusterings. However, this work represents a step towards a benchmark to compare two different machines: a quantum annealer and a neutral-atom quantum computer. Moreover, findings suggest promising potential for future advancements in hybrid quantum-classical pipelines, although further improvements are needed in both quantum and classical components.
- Abstract(参考訳): この研究は、中性原子量子コンピュータと量子アニールのために設計されたクラスタリングアグリゲーションを実行するためのハイブリッド量子古典アルゴリズムを提案する。
クラスタリング集約は、データセットを分割するデータサイエンス手法の重要なクラスであるクラスタリングアルゴリズムの弱点を軽減する技術であり、多くの現実世界のアプリケーションで広く利用されている。
クラスタリング集約問題インスタンスを最大独立集合 (MIS) 問題として、および準非拘束バイナリ最適化 (QUBO) 問題として表現することにより、パスカルのフレネル (中性原子プロセッサ) とD-Waveのアドバンテージ QPU (量子アニール) のポテンシャルを活用することでそれらを解くことができる。
さらに、設計されたクラスタリング集約アルゴリズムは、まずQuTiPに基づくFresnelエミュレータ上で検証され、後にPasqalによって提供されるテンソルネットワークに基づく同じマシンのエミュレータ上で検証された。
その結果、採用される中性原子プラットフォームに追加の制約を加えることの難しさや、生成されたクラスタリングの品質を測定するためのより良いメトリクスの必要性など、技術的な制限が明らかになった。
しかし、この研究は、量子アニールと中性原子量子コンピュータという2つの異なるマシンを比較するためのベンチマークへのステップを表している。
さらに、量子古典パイプラインの将来的な発展の可能性も示唆されているが、量子と古典の両方でさらなる改善が必要である。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Clustering by Contour coreset and variational quantum eigensolver [0.8544206632559302]
本稿では,変分量子固有解法(VQE)とカスタマイズコアセット法であるContour coresetを用いて,k平均クラスタリング問題を解くことを提案する。
我々の研究は、量子化されたコアセット技術は量子アルゴリズムの性能を大幅に向上させる可能性があることを示した。
論文 参考訳(メタデータ) (2023-12-06T14:21:17Z) - Quantum Vision Clustering [10.360126989185261]
本稿では,Adiabatic quantum computing を用いた解法に適した最初のクラスタリング定式化を提案する。
提案手法は,最先端の最適化手法と比較して高い競合性を示す。
この研究は、現在世代の実量子コンピュータにおけるクラスタリング問題の解決可能性を示す。
論文 参考訳(メタデータ) (2023-09-18T16:15:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Variational Quantum and Quantum-Inspired Clustering [0.0]
本稿では,変動量子回路に基づくクラスタリングのための量子アルゴリズムを提案する。
このアルゴリズムはデータを多くのクラスタに分類することができ、数量子のノイズ中間スケール量子(NISQ)デバイスで容易に実装できる。
論文 参考訳(メタデータ) (2022-06-20T17:02:19Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
本研究では、堅牢性多変数混合整数プログラム(MIP)の解法を含むReLUネットワークの検証について検討する。
この問題を軽減するために、ニューラルネットワーク検証にQCを用い、証明可能な証明書を計算するためのハイブリッド量子プロシージャを導入することを提案する。
シミュレーション環境では,我々の証明は健全であり,問題の近似に必要な最小量子ビット数に制限を与える。
論文 参考訳(メタデータ) (2022-05-02T13:23:56Z) - Quantum spectral clustering algorithm for unsupervised learning [0.8399688944263843]
本稿では,量子プロセッサ上でのスペクトルクラスタリングを実現する回路設計を提案する。
確立された量子$k$-meansアルゴリズムと比較して、我々の手法は量子ランダムアクセスメモリや量子断熱処理を必要としない。
論文 参考訳(メタデータ) (2022-03-07T05:06:47Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。