SurvBETA: Ensemble-Based Survival Models Using Beran Estimators and Several Attention Mechanisms
- URL: http://arxiv.org/abs/2412.07638v1
- Date: Tue, 10 Dec 2024 16:17:38 GMT
- Title: SurvBETA: Ensemble-Based Survival Models Using Beran Estimators and Several Attention Mechanisms
- Authors: Lev V. Utkin, Semen P. Khomets, Vlada A. Efremenko, Andrei V. Konstantinov,
- Abstract summary: We propose a new ensemble-based model called SurvBETA (the Survival Beran estimator Ensemble using Three Attention mechanisms)
The proposed model is presented in two forms: in a general form requiring to solve a complex optimization problem for its training; and in a simplified form by considering a special representation of the attention weights.
- Score: 2.024925013349319
- License:
- Abstract: Many ensemble-based models have been proposed to solve machine learning problems in the survival analysis framework, including random survival forests, the gradient boosting machine with weak survival models, ensembles of the Cox models. To extend the set of models, a new ensemble-based model called SurvBETA (the Survival Beran estimator Ensemble using Three Attention mechanisms) is proposed where the Beran estimator is used as a weak learner in the ensemble. The Beran estimator can be regarded as a kernel regression model taking into account the relationship between instances. Outputs of weak learners in the form of conditional survival functions are aggregated with attention weights taking into account the distance between the analyzed instance and prototypes of all bootstrap samples. The attention mechanism is used three times: for implementation of the Beran estimators, for determining specific prototypes of bootstrap samples and for aggregating the weak model predictions. The proposed model is presented in two forms: in a general form requiring to solve a complex optimization problem for its training; in a simplified form by considering a special representation of the attention weights by means of the imprecise Huber's contamination model which leads to solving a simple optimization problem. Numerical experiments illustrate properties of the model on synthetic data and compare the model with other survival models on real data. A code implementing the proposed model is publicly available.
Related papers
- Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort [31.992947353231564]
Concept Bottleneck Models (CBMs) can provide a principled way of disclosing and guiding model behaviors through human-understandable concepts.
We propose a novel framework designed to exploit pre-trained models while being immune to these biases, thereby reducing vulnerability to spurious correlations.
We evaluate the proposed method on multiple datasets, and the results demonstrate its effectiveness in reducing model reliance on spurious correlations while preserving its interpretability.
arXiv Detail & Related papers (2024-07-12T03:07:28Z) - Multi-View Conformal Learning for Heterogeneous Sensor Fusion [0.12086712057375555]
We build and test multi-view and single-view conformal models for heterogeneous sensor fusion.
Our models provide theoretical marginal confidence guarantees since they are based on the conformal prediction framework.
Our results also showed that multi-view models generate prediction sets with less uncertainty compared to single-view models.
arXiv Detail & Related papers (2024-02-19T17:30:09Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
We introduce a class of sample-based explanations we term high-dimensional representers.
Our workhorse is a novel representer theorem for general regularized high-dimensional models.
We study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets.
arXiv Detail & Related papers (2023-05-31T16:23:58Z) - Stability of clinical prediction models developed using statistical or
machine learning methods [0.5482532589225552]
Clinical prediction models estimate an individual's risk of a particular health outcome, conditional on their values of multiple predictors.
Many models are developed using small datasets that lead to instability in the model and its predictions (estimated risks)
We show instability in a model's estimated risks is often considerable, and manifests itself as miscalibration of predictions in new data.
arXiv Detail & Related papers (2022-11-02T11:55:28Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - MEGA: Model Stealing via Collaborative Generator-Substitute Networks [4.065949099860426]
Recent data-free model stealingmethods are shown effective to extract the knowledge of thetarget model without using real query examples.
We propose a data-free model stealing frame-work,MEGA, which is based on collaborative generator-substitute networks.
Our results show that theaccuracy of our trained substitute model and the adversarialattack success rate over it can be up to 33% and 40% higherthan state-of-the-art data-free black-box attacks.
arXiv Detail & Related papers (2022-01-31T09:34:28Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
We use pattern similarity-based methods for forecasting monthly electricity demand expressing annual seasonality.
An integral part of the models is the time series representation using patterns of time series sequences.
We consider four such models: nearest neighbor model, fuzzy neighborhood model, kernel regression model and general regression neural network.
arXiv Detail & Related papers (2020-03-03T12:14:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.