論文の概要: Privacy-Preserving Customer Support: A Framework for Secure and Scalable Interactions
- arxiv url: http://arxiv.org/abs/2412.07687v1
- Date: Tue, 10 Dec 2024 17:20:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:37:28.093093
- Title: Privacy-Preserving Customer Support: A Framework for Secure and Scalable Interactions
- Title(参考訳): プライバシ保護の顧客サポート:セキュアでスケーラブルなインタラクションのためのフレームワーク
- Authors: Anant Prakash Awasthi, Chandraketu Singh, Rakshit Varma, Sanchit Sharma,
- Abstract要約: 本稿では,大規模言語モデル(LLM)をゼロショット学習モードで活用する新しいアプローチとして,プライバシー保護ゼロショット学習(PP-ZSL)フレームワークを提案する。
従来の機械学習手法とは異なり、PP-ZSLは、事前学習されたLLMを使用して直接応答を生成することで、機密データに対する局所的なトレーニングを不要にしている。
このフレームワークには、リアルタイムデータ匿名化による機密情報の修正やマスク、ドメイン固有のクエリ解決のための検索強化生成(RAG)、規制基準の遵守を保証するための堅牢な後処理が含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The growing reliance on artificial intelligence (AI) in customer support has significantly improved operational efficiency and user experience. However, traditional machine learning (ML) approaches, which require extensive local training on sensitive datasets, pose substantial privacy risks and compliance challenges with regulations like the General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA). Existing privacy-preserving techniques, such as anonymization, differential privacy, and federated learning, address some concerns but face limitations in utility, scalability, and complexity. This paper introduces the Privacy-Preserving Zero-Shot Learning (PP-ZSL) framework, a novel approach leveraging large language models (LLMs) in a zero-shot learning mode. Unlike conventional ML methods, PP-ZSL eliminates the need for local training on sensitive data by utilizing pre-trained LLMs to generate responses directly. The framework incorporates real-time data anonymization to redact or mask sensitive information, retrieval-augmented generation (RAG) for domain-specific query resolution, and robust post-processing to ensure compliance with regulatory standards. This combination reduces privacy risks, simplifies compliance, and enhances scalability and operational efficiency. Empirical analysis demonstrates that the PP-ZSL framework provides accurate, privacy-compliant responses while significantly lowering the costs and complexities of deploying AI-driven customer support systems. The study highlights potential applications across industries, including financial services, healthcare, e-commerce, legal support, telecommunications, and government services. By addressing the dual challenges of privacy and performance, this framework establishes a foundation for secure, efficient, and regulatory-compliant AI applications in customer interactions.
- Abstract(参考訳): カスタマーサポートにおける人工知能(AI)への依存度の増加は、運用効率とユーザエクスペリエンスを大幅に改善した。
しかし、センシティブなデータセットに対する広範なローカルトレーニングを必要とする従来の機械学習(ML)アプローチは、General Data Protection Regulation(GDPR)やCalifornia Consumer Privacy Act(CCPA)といった規制によって、かなりのプライバシーリスクとコンプライアンス上の課題を引き起こす。
匿名化、差分プライバシー、フェデレーション学習といった既存のプライバシ保護技術は、いくつかの懸念に対処するが、実用性、スケーラビリティ、複雑さの制限に直面している。
本稿では,大規模言語モデル(LLM)をゼロショット学習モードで活用する新しいアプローチとして,プライバシー保護ゼロショット学習(PP-ZSL)フレームワークを提案する。
従来のML手法とは異なり、PP-ZSLは、事前訓練されたLCMを使用して直接応答を生成することで、機密データに対する局所的なトレーニングを不要にしている。
このフレームワークには、リアルタイムデータ匿名化による機密情報の修正やマスク、ドメイン固有のクエリ解決のための検索強化生成(RAG)、規制基準の遵守を保証するための堅牢な後処理が含まれている。
この組み合わせは、プライバシのリスクを低減し、コンプライアンスを簡素化し、スケーラビリティと運用効率を向上させる。
実証分析は、PP-ZSLフレームワークが正確でプライバシに準拠した応答を提供する一方で、AI駆動のカスタマーサポートシステムをデプロイする際のコストと複雑さを著しく低減していることを示している。
この研究は、金融サービス、ヘルスケア、電子商取引、法的支援、通信、政府サービスなど、業界全体の潜在的な応用に焦点を当てている。
プライバシとパフォーマンスという2つの課題に対処することによって、このフレームワークは、顧客インタラクションにおけるセキュアで効率的で規制に準拠するAIアプリケーションの基礎を確立します。
関連論文リスト
- Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
本稿では,最先端AI技術を用いてPFLを強化する新しい手法を提案する。
本稿では、個々のクライアントモデルの性能を高め、堅牢なプライバシ保護機構を保証するモデルを提案する。
この研究は、真のパーソナライズされたプライバシを重視したAIシステムの新たな時代への道を開くものだ。
論文 参考訳(メタデータ) (2025-01-30T07:03:29Z) - A Practical and Privacy-Preserving Framework for Real-World Large Language Model Services [8.309281698695381]
大規模言語モデル(LLM)は、テキスト理解と生成において例外的な能力を示した。
個人はしばしばLLM企業が提供するオンラインAI・アズ・ア・サービス(AI)に依存している。
このビジネスモデルは、サービスプロバイダがユーザのトレースパターンや行動データを悪用する可能性があるため、重大なプライバシー上のリスクをもたらす。
本稿では,サービスプロバイダが要求を提出した個人にリンクさせることを防止し,ユーザの匿名性を確保するための実用的かつプライバシ保護フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-03T07:40:28Z) - Data Obfuscation through Latent Space Projection (LSP) for Privacy-Preserving AI Governance: Case Studies in Medical Diagnosis and Finance Fraud Detection [0.0]
本稿では、AIガバナンスの強化と、責任あるAIコンプライアンスの確保を目的とした、新しい技術であるLSP(Data Obfuscation through Latent Space Projection)を紹介する。
LSPは機械学習を使用して、機密データを潜在空間に投影し、モデルトレーニングと推論に不可欠な機能を保ちながら効果的に難読化する。
LSPの有効性は、ベンチマークデータセットの実験と、医療がん診断と金融詐欺分析の2つの実世界のケーススタディを通じて検証する。
論文 参考訳(メタデータ) (2024-10-22T22:31:03Z) - Trustworthy AI: Securing Sensitive Data in Large Language Models [0.0]
大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にすることで自然言語処理(NLP)を変革した。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-26T19:02:33Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.9208007322096533]
本稿では、機械学習(ML)の進化する展望と、その様々な分野における大きな影響について考察する。
プライバシ保護機械学習(PPML)の新たな分野に焦点を当てている。
MLアプリケーションは、通信、金融技術、監視といった産業にとってますます不可欠なものになりつつあるため、プライバシー上の懸念が高まる。
論文 参考訳(メタデータ) (2024-02-25T17:31:06Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Cooperative Multi-Agent Actor-Critic for Privacy-Preserving Load
Scheduling in a Residential Microgrid [71.17179010567123]
本稿では,分散型アクターを分散批評家に教育する,プライバシ保護型マルチエージェントアクター批判フレームワークを提案する。
提案手法は,家庭のプライバシを保護しつつ,暗黙的にマルチエージェントの信用代入メカニズムを学習する。
論文 参考訳(メタデータ) (2021-10-06T14:05:26Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。