論文の概要: Trustworthy AI: Securing Sensitive Data in Large Language Models
- arxiv url: http://arxiv.org/abs/2409.18222v1
- Date: Thu, 26 Sep 2024 19:02:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:21:45.161124
- Title: Trustworthy AI: Securing Sensitive Data in Large Language Models
- Title(参考訳): 信頼できるAI - 大規模言語モデルにおけるセンシティブなデータ保護
- Authors: Georgios Feretzakis, Vassilios S. Verykios,
- Abstract要約: 大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にすることで自然言語処理(NLP)を変革した。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have transformed natural language processing (NLP) by enabling robust text generation and understanding. However, their deployment in sensitive domains like healthcare, finance, and legal services raises critical concerns about privacy and data security. This paper proposes a comprehensive framework for embedding trust mechanisms into LLMs to dynamically control the disclosure of sensitive information. The framework integrates three core components: User Trust Profiling, Information Sensitivity Detection, and Adaptive Output Control. By leveraging techniques such as Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC), Named Entity Recognition (NER), contextual analysis, and privacy-preserving methods like differential privacy, the system ensures that sensitive information is disclosed appropriately based on the user's trust level. By focusing on balancing data utility and privacy, the proposed solution offers a novel approach to securely deploying LLMs in high-risk environments. Future work will focus on testing this framework across various domains to evaluate its effectiveness in managing sensitive data while maintaining system efficiency.
- Abstract(参考訳): 大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にし、自然言語処理(NLP)を変革した。
しかしながら、医療、金融、法律サービスといった機密性の高い分野への展開は、プライバシとデータセキュリティに関する重要な懸念を提起する。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
このフレームワークは、ユーザ信頼プロファイリング、情報感度検出、適応出力制御の3つのコアコンポーネントを統合している。
RBAC(Role-Based Access Control)、ABAC(Attribute-Based Access Control)、NER(Named Entity Recognition)、コンテキスト分析(Contextual Analysis)、および差分プライバシーのようなプライバシ保護手法を活用することにより、システムはユーザの信頼度に基づいて機密情報が適切に開示されることを保証する。
データユーティリティとプライバシのバランスに焦点を合わせることで、提案されたソリューションは、リスクの高い環境でLLMをセキュアにデプロイするための新しいアプローチを提供する。
今後の作業は、このフレームワークをさまざまなドメインでテストすることに集中し、システムの効率を維持しながら機密データを管理する効率を評価する。
関連論文リスト
- AI-Driven Secure Data Sharing: A Trustworthy and Privacy-Preserving Approach [1.4274471390400758]
本研究は,ブロックピクセル操作に基づく学習可能な暗号化手法によるセキュアなフレームワークを導入し,データを暗号化する。
提案されたフレームワークは、キーごとにユニークなスクランブルパターンを作成することによって、データのプライバシとセキュリティを保証する。
このフレームワークは、実世界のデータセットを広範囲にテストした後、94%の成功率で検証された。
論文 参考訳(メタデータ) (2025-01-26T02:03:19Z) - Deploying Privacy Guardrails for LLMs: A Comparative Analysis of Real-World Applications [3.1810537478232406]
OneShieldは、エンタープライズおよびオープンソース環境でのユーザ入力とLLM出力のプライバシーリスクを軽減するために設計されたフレームワークである。
企業規模のデータガバナンスに焦点をあてて、2つの実世界のデプロイメントを分析します。
OneShieldは26言語にわたるセンシティブなエンティティの検出で0.95 F1スコアを獲得し、最先端のツールを上回った。
論文 参考訳(メタデータ) (2025-01-21T19:04:53Z) - Powering LLM Regulation through Data: Bridging the Gap from Compute Thresholds to Customer Experiences [0.0]
本稿では,計算レベルのしきい値と一般化モデル評価に着目した現在の規制手法は,特定のLCMベースのユーザエクスペリエンスの安全性と有効性を保証するには不十分である,と論じる。
本稿では,ユーザによる実際の体験と評価のための高品質データセットのキュレーションを中心とした認定プロセスへの移行を提案する。
論文 参考訳(メタデータ) (2025-01-12T16:20:40Z) - Privacy-Preserving Customer Support: A Framework for Secure and Scalable Interactions [0.0]
本稿では,大規模言語モデル(LLM)をゼロショット学習モードで活用する新しいアプローチとして,プライバシー保護ゼロショット学習(PP-ZSL)フレームワークを提案する。
従来の機械学習手法とは異なり、PP-ZSLは、事前学習されたLLMを使用して直接応答を生成することで、機密データに対する局所的なトレーニングを不要にしている。
このフレームワークには、リアルタイムデータ匿名化による機密情報の修正やマスク、ドメイン固有のクエリ解決のための検索強化生成(RAG)、規制基準の遵守を保証するための堅牢な後処理が含まれている。
論文 参考訳(メタデータ) (2024-12-10T17:20:47Z) - Towards Secure and Private AI: A Framework for Decentralized Inference [14.526663289437584]
大規模マルチモーダル基盤モデルは、スケーラビリティ、信頼性、潜在的な誤用に関する課題を提示する。
分散システムは、ワークロードの分散と障害の中心的なポイントの緩和によるソリューションを提供する。
これらの課題に対処するためには、AI開発に責任を負うように設計された包括的なフレームワークを使います。
論文 参考訳(メタデータ) (2024-07-28T05:09:17Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。