論文の概要: Trustworthy AI: Securing Sensitive Data in Large Language Models
- arxiv url: http://arxiv.org/abs/2409.18222v1
- Date: Thu, 26 Sep 2024 19:02:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:21:45.161124
- Title: Trustworthy AI: Securing Sensitive Data in Large Language Models
- Title(参考訳): 信頼できるAI - 大規模言語モデルにおけるセンシティブなデータ保護
- Authors: Georgios Feretzakis, Vassilios S. Verykios,
- Abstract要約: 大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にすることで自然言語処理(NLP)を変革した。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have transformed natural language processing (NLP) by enabling robust text generation and understanding. However, their deployment in sensitive domains like healthcare, finance, and legal services raises critical concerns about privacy and data security. This paper proposes a comprehensive framework for embedding trust mechanisms into LLMs to dynamically control the disclosure of sensitive information. The framework integrates three core components: User Trust Profiling, Information Sensitivity Detection, and Adaptive Output Control. By leveraging techniques such as Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC), Named Entity Recognition (NER), contextual analysis, and privacy-preserving methods like differential privacy, the system ensures that sensitive information is disclosed appropriately based on the user's trust level. By focusing on balancing data utility and privacy, the proposed solution offers a novel approach to securely deploying LLMs in high-risk environments. Future work will focus on testing this framework across various domains to evaluate its effectiveness in managing sensitive data while maintaining system efficiency.
- Abstract(参考訳): 大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にし、自然言語処理(NLP)を変革した。
しかしながら、医療、金融、法律サービスといった機密性の高い分野への展開は、プライバシとデータセキュリティに関する重要な懸念を提起する。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
このフレームワークは、ユーザ信頼プロファイリング、情報感度検出、適応出力制御の3つのコアコンポーネントを統合している。
RBAC(Role-Based Access Control)、ABAC(Attribute-Based Access Control)、NER(Named Entity Recognition)、コンテキスト分析(Contextual Analysis)、および差分プライバシーのようなプライバシ保護手法を活用することにより、システムはユーザの信頼度に基づいて機密情報が適切に開示されることを保証する。
データユーティリティとプライバシのバランスに焦点を合わせることで、提案されたソリューションは、リスクの高い環境でLLMをセキュアにデプロイするための新しいアプローチを提供する。
今後の作業は、このフレームワークをさまざまなドメインでテストすることに集中し、システムの効率を維持しながら機密データを管理する効率を評価する。
関連論文リスト
- Data Obfuscation through Latent Space Projection (LSP) for Privacy-Preserving AI Governance: Case Studies in Medical Diagnosis and Finance Fraud Detection [0.0]
本稿では、AIガバナンスの強化と、責任あるAIコンプライアンスの確保を目的とした、新しい技術であるLSP(Data Obfuscation through Latent Space Projection)を紹介する。
LSPは機械学習を使用して、機密データを潜在空間に投影し、モデルトレーニングと推論に不可欠な機能を保ちながら効果的に難読化する。
LSPの有効性は、ベンチマークデータセットの実験と、医療がん診断と金融詐欺分析の2つの実世界のケーススタディを通じて検証する。
論文 参考訳(メタデータ) (2024-10-22T22:31:03Z) - Adaptive Guardrails For Large Language Models via Trust Modeling and In-Context Learning [9.719986610417441]
ガードレールはLarge Language Model (LLM) の不可欠な部分となっている。
本研究は,信頼モデリングによって支援され,文脈内学習により強化された適応型ガードレール機構を提案する。
ダイレクト・インタラクション・トラストと権限認証・信頼の組み合わせを利用することで、コンテンツモデレーションの厳格さをユーザの信頼性に合わせるように正確に調整する。
論文 参考訳(メタデータ) (2024-08-16T18:07:48Z) - Complete Security and Privacy for AI Inference in Decentralized Systems [14.526663289437584]
大規模なモデルは病気の診断のようなタスクには不可欠ですが、繊細でスケーラビリティに欠ける傾向があります。
Nesaはこれらの課題を、複数のテクニックを使って包括的なフレームワークで解決し、データとモデル出力を保護する。
ネサの最先端の証明と原則は、このフレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2024-07-28T05:09:17Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Data Collaboration Analysis Over Matrix Manifolds [0.0]
プライバシー保護機械学習(PPML)は、機密情報の保護によってこの問題に対処する。
NRI-DCフレームワークは革新的なアプローチとして登場し、機関間の「データアイランド」問題を解消する可能性がある。
本研究は,これらの協調関数の厳密な理論的基礎を確立し,新しい定式化を導入する。
論文 参考訳(メタデータ) (2024-03-05T08:52:16Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
本稿では、機械学習(ML)の進化する展望と、その様々な分野における大きな影響について考察する。
プライバシ保護機械学習(PPML)の新たな分野に焦点を当てている。
MLアプリケーションは、通信、金融技術、監視といった産業にとってますます不可欠なものになりつつあるため、プライバシー上の懸念が高まる。
論文 参考訳(メタデータ) (2024-02-25T17:31:06Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。