Multi-Response Preference Optimization with Augmented Ranking Dataset
- URL: http://arxiv.org/abs/2412.07812v1
- Date: Tue, 10 Dec 2024 05:45:36 GMT
- Title: Multi-Response Preference Optimization with Augmented Ranking Dataset
- Authors: Hansle Gwon, Imjin Ahn, Young-Hak Kim, Sanghyun Park, Tae Joon Jun,
- Abstract summary: Preference optimization has played a significant role in improving the performance of Large Language Models.
We propose a novel approach to augment Preference Optimization datasets.
We also introduce a Multi-response-based Preference Optimization training method.
- Score: 2.8973004951877357
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have been remarkable, with new models consistently surpassing their predecessors. These advancements are underpinned by extensive research on various training mechanisms. Among these, Preference Optimization has played a significant role in improving the performance of LLMs by incorporating human preferences into the training process. However, constructing preference optimization datasets is challenging and the optimization process is highly sensitive to the dataset quality. In this study, we propose a novel approach to augment Preference Optimization datasets. Additionally, we introduce a Multi-response-based Preference Optimization training method that enables the simultaneous learning of multiple responses.
Related papers
- Plug-and-Play Training Framework for Preference Optimization [25.53286104242179]
We propose a novel training framework for large language models (LLMs)
This framework employs multiple sampling to analyze output distributions, assign different weights to samples, and incorporate these weights into the preference optimization process.
Experimental results demonstrate that our framework integrates seamlessly with various preference optimization methods and achieves consistent improvements in mathematical reasoning tasks.
arXiv Detail & Related papers (2024-12-30T15:01:48Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - Optimizing LLMs with Direct Preferences: A Data Efficiency Perspective [4.548047308860141]
This study investigates the impact of different type of preference data on model performance.
It aims to reduce their dependency on extensive amounts of preference data, which is expensive to collect.
arXiv Detail & Related papers (2024-10-22T00:11:41Z) - Preference Optimization with Multi-Sample Comparisons [53.02717574375549]
We introduce a novel approach that extends post-training to include multi-sample comparisons.
These approaches fail to capture critical characteristics such as generative diversity and bias.
We demonstrate that multi-sample comparison is more effective in optimizing collective characteristics than single-sample comparison.
arXiv Detail & Related papers (2024-10-16T00:59:19Z) - MotionRL: Align Text-to-Motion Generation to Human Preferences with Multi-Reward Reinforcement Learning [99.09906827676748]
We introduce MotionRL, the first approach to utilize Multi-Reward Reinforcement Learning (RL) for optimizing text-to-motion generation tasks.
Our novel approach uses reinforcement learning to fine-tune the motion generator based on human preferences prior knowledge of the human perception model.
In addition, MotionRL introduces a novel multi-objective optimization strategy to approximate optimality between text adherence, motion quality, and human preferences.
arXiv Detail & Related papers (2024-10-09T03:27:14Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - AIPO: Improving Training Objective for Iterative Preference Optimization [34.24211649396053]
We study iterative preference optimization with synthetic data.
We propose our training objective for iterative preference optimization, namely Agreement-aware Iterative Preference Optimization (AIPO)
arXiv Detail & Related papers (2024-09-13T14:03:49Z) - TSO: Self-Training with Scaled Preference Optimization [14.3799656174528]
We propose TSO, a framework for preference optimization that conducts self-training preference learning without training an additional reward model.
TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses.
Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks.
arXiv Detail & Related papers (2024-08-31T05:37:01Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.