SDPERL: A Framework for Software Defect Prediction Using Ensemble Feature Extraction and Reinforcement Learning
- URL: http://arxiv.org/abs/2412.07927v2
- Date: Sun, 15 Dec 2024 08:16:11 GMT
- Title: SDPERL: A Framework for Software Defect Prediction Using Ensemble Feature Extraction and Reinforcement Learning
- Authors: Mohsen Hesamolhokama, Amirahmad Shafiee, Mohammadreza Ahmaditeshnizi, Mohammadamin Fazli, Jafar Habibi,
- Abstract summary: This paper proposes an innovative framework for software defect prediction.
It combines ensemble feature extraction with reinforcement learning (RL)--based feature selection.
We claim that this work is among the first in recent efforts to address this challenge at the file-level granularity.
- Score: 0.0
- License:
- Abstract: Ensuring software quality remains a critical challenge in complex and dynamic development environments, where software defects can result in significant operational and financial risks. This paper proposes an innovative framework for software defect prediction that combines ensemble feature extraction with reinforcement learning (RL)--based feature selection. We claim that this work is among the first in recent efforts to address this challenge at the file-level granularity. The framework extracts diverse semantic and structural features from source code using five code-specific pre-trained models. Feature selection is enhanced through a custom-defined embedding space tailored to represent feature interactions, coupled with a pheromone table mechanism inspired by Ant Colony Optimization (ACO) to guide the RL agent effectively. Using the Proximal Policy Optimization (PPO) algorithm, the proposed method dynamically identifies the most predictive features for defect detection. Experimental evaluations conducted on the PROMISE dataset highlight the framework's superior performance on the F1-Score metric, achieving an average improvement of $6.25\%$ over traditional methods and baseline models across diverse datasets. This study underscores the potential for integrating ensemble learning and RL for adaptive and scalable defect prediction in modern software systems.
Related papers
- "FRAME: Forward Recursive Adaptive Model Extraction -- A Technique for Advance Feature Selection" [0.0]
This study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME)
FRAME combines Forward Selection and Recursive Feature Elimination to enhance feature selection across diverse datasets.
The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics.
arXiv Detail & Related papers (2025-01-21T08:34:10Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.
We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.
By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - A Hybrid Sampling and Multi-Objective Optimization Approach for Enhanced Software Defect Prediction [3.407555189785573]
This paper introduces a novel SDP framework that integrates hybrid sampling techniques, with a suite of multi-objective optimization algorithms.
The proposed model applies feature fusion through multi-objective optimization, enhancing both the generalization capability and stability of the predictions.
Experiments conducted on datasets from NASA and PROMISE repositories demonstrate that the proposed hybrid sampling and multi-objective optimization approach improves data balance, eliminates redundant features, and enhances prediction accuracy.
arXiv Detail & Related papers (2024-10-13T23:39:04Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Unsupervised Learning for Combinatorial Optimization with Principled
Objective Relaxation [19.582494782591386]
This work proposes an unsupervised learning framework for optimization (CO) problems.
Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the final integral solutions.
In particular, this observation can guide the design of objective models in applications where the objectives are not given explicitly while requiring being modeled in prior.
arXiv Detail & Related papers (2022-07-13T06:44:17Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.