An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model
- URL: http://arxiv.org/abs/2503.22192v1
- Date: Fri, 28 Mar 2025 07:20:40 GMT
- Title: An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model
- Authors: Anindya Sarkar, G. Vadivu,
- Abstract summary: This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures.<n>The framework uses rich set of technical indicators and it scales its predictors based on the current market situation.<n>It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars.
- Score: 4.097563258332958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures: The particular areas of interest for the research include but are not limited to: Variational Autoencoder (VAE), Transformer, and Long Short-Term Memory (LSTM) networks. The presented framework is aimed to substantially utilize the advantages of each model which would allow for achieving the identification of both linear and non-linear relations in stock price movements. To improve the accuracy of its predictions it uses rich set of technical indicators and it scales its predictors based on the current market situation. By trying out the framework on several stock data sets, and benchmarking the results against single models and conventional forecasting, the ensemble method exhibits consistently high accuracy and reliability. The VAE is able to learn linear representation on high-dimensional data while the Transformer outstandingly perform in recognizing long-term patterns on the stock price data. LSTM, based on its characteristics of being a model that can deal with sequences, brings additional improvements to the given framework, especially regarding temporal dynamics and fluctuations. Combined, these components provide exceptional directional performance and a very small disparity in the predicted results. The present solution has given a probable concept that can handle the inherent problem of stock price prediction with high reliability and scalability. Compared to the performance of individual proposals based on the neural network, as well as classical methods, the proposed ensemble framework demonstrates the advantages of combining different architectures. It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars.
Related papers
- Multi-Agent Stock Prediction Systems: Machine Learning Models, Simulations, and Real-Time Trading Strategies [0.0]
This paper presents a comprehensive study on stock price prediction, leveraging advanced machine learning (ML) and deep learning (DL) techniques to improve financial forecasting accuracy.<n>The research evaluates the performance of various recurrent neural network (RNN) architectures, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU)<n>Our findings show that attention-based models outperform other architectures, achieving the highest accuracy by capturing both short and long-term dependencies.
arXiv Detail & Related papers (2025-02-21T06:36:16Z) - The AI Black-Scholes: Finance-Informed Neural Network [11.339331636751329]
In option pricing, existing models are typically classified into principle-driven methods and data-driven approaches.<n>In contrast, data-driven models excel in capturing market data trends, but they often lack alignment with core financial principles.<n>This work proposes a hybrid approach to address these limitations by integrating the strengths of both principled and data-driven methodologies.
arXiv Detail & Related papers (2024-12-15T22:40:40Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
The aim is to improve the prediction accuracy of the next day's closing price of the NIFTY 50 index, a prominent Indian stock market index.
A combination of eight influential factors is carefully chosen from fundamental stock data, technical indicators, crude oil price, and macroeconomic data to train the models.
arXiv Detail & Related papers (2024-06-02T06:39:01Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.<n>By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.<n>Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor
and Optimal Transport [8.617532047238461]
We propose a novel architecture, Temporal Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns.
TRA is a lightweight module that consists of a set independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors.
We show that the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively.
arXiv Detail & Related papers (2021-06-24T12:19:45Z) - DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and
Feature Selection for Financial Data Analysis [22.035287788330663]
We propose DoubleEnsemble, an ensemble framework leveraging learning trajectory based sample reweighting and shuffling based feature selection.
Our model is applicable to a wide range of base models, capable of extracting complex patterns, while mitigating the overfitting and instability issues for financial market prediction.
arXiv Detail & Related papers (2020-10-03T02:57:10Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.