論文の概要: Diffusion-Based Attention Warping for Consistent 3D Scene Editing
- arxiv url: http://arxiv.org/abs/2412.07984v1
- Date: Tue, 10 Dec 2024 23:57:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:02:28.493737
- Title: Diffusion-Based Attention Warping for Consistent 3D Scene Editing
- Title(参考訳): 連続した3次元シーン編集のための拡散型アテンションワープ
- Authors: Eyal Gomel, Lior Wolf,
- Abstract要約: 拡散モデルを用いた3次元シーン編集のための新しい手法を提案する。
提案手法は,単一の参照画像から抽出した注目機能を利用して,意図した編集を定義する。
これらの歪んだ特徴を他の視点に注入することで、編集のコヒーレントな伝播を可能にする。
- 参考スコア(独自算出の注目度): 55.2480439325792
- License:
- Abstract: We present a novel method for 3D scene editing using diffusion models, designed to ensure view consistency and realism across perspectives. Our approach leverages attention features extracted from a single reference image to define the intended edits. These features are warped across multiple views by aligning them with scene geometry derived from Gaussian splatting depth estimates. Injecting these warped features into other viewpoints enables coherent propagation of edits, achieving high fidelity and spatial alignment in 3D space. Extensive evaluations demonstrate the effectiveness of our method in generating versatile edits of 3D scenes, significantly advancing the capabilities of scene manipulation compared to the existing methods. Project page: \url{https://attention-warp.github.io}
- Abstract(参考訳): 本稿では,視点間の一貫性とリアリズムを確保するために,拡散モデルを用いた3次元シーン編集手法を提案する。
提案手法は,単一の参照画像から抽出した注目機能を利用して,意図した編集を定義する。
これらの特徴は、ガウスのスプラッティング深度推定から得られた風景形状と整列することで、複数の視点で歪められる。
これらの歪んだ特徴を他の視点に注入することで、編集のコヒーレントな伝播を可能にし、3次元空間における高忠実性と空間的アライメントを達成する。
広範に評価した結果、3次元シーンの多目的編集における本手法の有効性が示され、既存の手法と比較してシーン操作の能力が大幅に向上した。
プロジェクトページ: \url{https://attention-warp.github.io}
関連論文リスト
- Revealing Directions for Text-guided 3D Face Editing [52.85632020601518]
3次元顔編集はマルチメディアにおいて重要な課題であり、様々な制御信号間での3次元顔モデルの操作を目的としている。
任意の属性記述に基づく3次元顔の生成と操作のためのテキスト汎用アプローチであるFace Clanを提案する。
本手法は,ユーザがテキスト記述で興味のある領域を直感的にカスタマイズできる,正確に制御可能な操作方法を提供する。
論文 参考訳(メタデータ) (2024-10-07T12:04:39Z) - 3D Gaussian Editing with A Single Image [19.662680524312027]
本稿では,3次元ガウシアンスプラッティングをベースとしたワンイメージ駆動の3Dシーン編集手法を提案する。
提案手法は,ユーザが指定した視点から描画した画像の編集版に合わせるために,3次元ガウスを最適化することを学ぶ。
実験により, 幾何学的詳細処理, 長距離変形, 非剛性変形処理における本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-14T13:17:42Z) - Localized Gaussian Splatting Editing with Contextual Awareness [10.46087834880747]
本稿では,3Dガウススプラッティング(3DGS)表現のための照明対応3Dシーン編集パイプラインを提案する。
最先端条件付き2次元拡散モデルによる塗装は、照明の背景と一致している。
提案手法は,光輸送を明示的にモデル化することなく,局所的な照明の整合性を効果的に実現している。
論文 参考訳(メタデータ) (2024-07-31T18:00:45Z) - SyncNoise: Geometrically Consistent Noise Prediction for Text-based 3D Scene Editing [58.22339174221563]
高忠実度3Dシーン編集のための新しい幾何誘導型マルチビュー一貫したノイズ編集手法SyncNoiseを提案する。
SyncNoiseは2次元拡散モデルで複数のビューを同期的に編集し、幾何的に一貫した多視点ノイズ予測を行う。
本手法は,特に複雑なテクスチャを持つシーンにおいて,テキストの指示に配慮した高品質な3D編集結果を実現する。
論文 参考訳(メタデータ) (2024-06-25T09:17:35Z) - 3DitScene: Editing Any Scene via Language-guided Disentangled Gaussian Splatting [100.94916668527544]
既存の方法は、個々の2Dオブジェクトまたは3Dグローバルシーン編集にのみ焦点をあてる。
本稿では,新鮮で統一的なシーン編集フレームワークである3DitSceneを提案する。
2Dから3Dへのシームレスな編集が可能で、シーン構成や個々のオブジェクトを正確に制御できる。
論文 参考訳(メタデータ) (2024-05-28T17:59:01Z) - Move Anything with Layered Scene Diffusion [77.45870343845492]
拡散サンプリング過程におけるシーン表現を最適化するために,SceneDiffusionを提案する。
我々の重要な洞察は、異なる空間配置のシーンレンダリングを共同でデノベートすることで、空間的ゆがみを得ることができることである。
生成したシーンは、移動、再サイズ、クローニング、レイヤーワイドな外観編集操作を含む、幅広い空間編集操作をサポートする。
論文 参考訳(メタデータ) (2024-04-10T17:28:16Z) - Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
単一画像の3次元操作を可能にする新しい画像編集手法を提案する。
本手法は,テキスト・イメージ・ペアの広い範囲で訓練された強力な画像拡散モデルを直接活用する。
提案手法では,高画質な3D画像編集が可能で,視点変換が大きく,外観や形状の整合性も高い。
論文 参考訳(メタデータ) (2024-03-18T06:18:59Z) - GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing [38.948892064761914]
GaussCtrlは、3D Gaussian Splatting(3DGS)によって再構成された3Dシーンを編集するテキスト駆動方式である。
私たちの重要な貢献は、複数ビューの一貫性のある編集であり、1つの画像を反復的に編集する代わりに、すべての画像を一緒に編集できる。
論文 参考訳(メタデータ) (2024-03-13T17:35:28Z) - Compositional 3D Scene Generation using Locally Conditioned Diffusion [49.5784841881488]
合成シーン拡散へのアプローチとして,テクスブフォローカライズ条件付き拡散を導入する。
本研究では, スコア蒸留によるテキスト・ツー・3D合成パイプラインを試作し, 関連するベースラインよりも高忠実度で合成3Dシーンを生成できることを示した。
論文 参考訳(メタデータ) (2023-03-21T22:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。