論文の概要: The Adversarial Consistency of Surrogate Risks for Binary Classification
- arxiv url: http://arxiv.org/abs/2305.09956v3
- Date: Sat, 23 Dec 2023 02:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-28 01:57:59.365863
- Title: The Adversarial Consistency of Surrogate Risks for Binary Classification
- Title(参考訳): 二元分類における代理リスクの逆整合性
- Authors: Natalie Frank and Jonathan Niles-Weed
- Abstract要約: 逆行訓練は、各例が小さなボール内で悪質に破損する可能性がある場合に、予想される0$-$1$損失を最小限にすることを目指している。
我々は、一貫した代理損失関数の集合の単純かつ完全な特徴づけを与える。
本結果から, 逆一貫したサロゲートのクラスは, 標準設定よりもかなり小さいことが明らかとなった。
- 参考スコア(独自算出の注目度): 20.03511985572199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the consistency of surrogate risks for robust binary classification.
It is common to learn robust classifiers by adversarial training, which seeks
to minimize the expected $0$-$1$ loss when each example can be maliciously
corrupted within a small ball. We give a simple and complete characterization
of the set of surrogate loss functions that are \emph{consistent}, i.e., that
can replace the $0$-$1$ loss without affecting the minimizing sequences of the
original adversarial risk, for any data distribution. We also prove a
quantitative version of adversarial consistency for the $\rho$-margin loss. Our
results reveal that the class of adversarially consistent surrogates is
substantially smaller than in the standard setting, where many common
surrogates are known to be consistent.
- Abstract(参考訳): 頑健な二分分類のための代理リスクの整合性について検討する。
逆行訓練によってロバストな分類法を学ぶことは一般的であり、各例が小さなボール内で悪質に破損した場合、予想される0$-$1$損失を最小限に抑える。
すなわち、任意のデータ分布に対して、元の敵のリスクの最小化シーケンスに影響を与えることなく、$0〜$$の損失を置き換えることができる。
また、$\rho$-marginの損失に対する逆整合性の定量的バージョンも証明します。
本結果から, 逆一貫したサロゲートのクラスは, 多くの共通サロゲートが整合であることが知られている標準設定よりもかなり小さいことが明らかとなった。
関連論文リスト
- A Universal Growth Rate for Learning with Smooth Surrogate Losses [30.389055604165222]
2進分類におけるスムーズなマージンベースサロゲート損失に対して,0付近の平方根成長速度を証明した。
我々は、この分析を、一連の新しい結果でマルチクラス分類に拡張する。
論文 参考訳(メタデータ) (2024-05-09T17:59:55Z) - Adversarial Consistency and the Uniqueness of the Adversarial Bayes Classifier [0.0]
逆代理リスクの最小化は、堅牢な分類器を学習するための一般的な手法である。
妥当な分布仮定の下では、凸代理損失は逆学習において統計的に整合であることが示され、逆ベイズ分類器は特異性の特定の概念を満たす。
論文 参考訳(メタデータ) (2024-04-26T12:16:08Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
対人訓練の2つのプレイヤーゼロサムパラダイムは、十分な強靭性を発揮できていない。
敵のトレーニングアルゴリズムでよく使われるサロゲートベースの緩和は、ロバスト性に関するすべての保証を無効にすることを示す。
対人訓練の新たな非ゼロサム二段階の定式化は、一致し、場合によっては最先端の攻撃よりも優れたフレームワークをもたらす。
論文 参考訳(メタデータ) (2023-06-19T16:00:48Z) - Robust Lipschitz Bandits to Adversarial Corruptions [61.85150061213987]
リプシッツ・バンディット(英: Lipschitz bandit)は、計量空間上で定義された連続アーム集合を扱うバンディットの変種である。
本稿では,敵対的腐敗の存在下でのリプシッツ・バンディットの新たな問題を紹介する。
我々の研究は、両タイプの敵の下でサブ線形後悔を達成できるロバストなリプシッツ・バンディットアルゴリズムの最初のラインを提示する。
論文 参考訳(メタデータ) (2023-05-29T18:16:59Z) - The Consistency of Adversarial Training for Binary Classification [12.208787849155048]
敵の訓練は、上限に基づく代理リスクを最小化する。
双対分類におけるルベーグ測度に対して絶対連続的な分布に対して、どの超極基底が整合であるかを特徴付ける。
論文 参考訳(メタデータ) (2022-06-18T03:37:43Z) - Label Distributionally Robust Losses for Multi-class Classification:
Consistency, Robustness and Adaptivity [55.29408396918968]
多クラス分類のためのラベル分布ロバスト(LDR)損失という損失関数群について検討した。
我々の貢献は、多クラス分類のためのLDR損失のトップ$kの一貫性を確立することによって、一貫性と堅牢性の両方を含んでいる。
本稿では,各インスタンスのクラスラベルの雑音度に個別化温度パラメータを自動的に適応させる適応型LDR損失を提案する。
論文 参考訳(メタデータ) (2021-12-30T00:27:30Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
本稿では,敵対的腐敗の存在下での線形文脈的包帯問題について検討する。
逆汚染レベルに適応する分散認識アルゴリズムをC$で提案する。
論文 参考訳(メタデータ) (2021-10-25T02:53:24Z) - Constrained Classification and Policy Learning [0.0]
制約付き分類器の集合における代理損失手順の整合性について検討する。
ヒンジ損失が第2のベストシナリオにおける一貫性を維持する唯一のサロゲート損失であることを示す。
論文 参考訳(メタデータ) (2021-06-24T10:43:00Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z) - Calibrated Surrogate Losses for Adversarially Robust Classification [92.37268323142307]
線形モデルに制限された場合の逆0-1損失に対して凸代理損失は考慮されないことを示す。
また,Massartの雑音条件を満たす場合,対向条件下では凸損失も校正可能であることを示す。
論文 参考訳(メタデータ) (2020-05-28T02:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。