論文の概要: EmoVerse: Exploring Multimodal Large Language Models for Sentiment and Emotion Understanding
- arxiv url: http://arxiv.org/abs/2412.08049v3
- Date: Mon, 31 Mar 2025 07:15:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 15:20:31.21634
- Title: EmoVerse: Exploring Multimodal Large Language Models for Sentiment and Emotion Understanding
- Title(参考訳): EmoVerse: 感情理解のためのマルチモーダルな大規模言語モデル
- Authors: Ao Li, Longwei Xu, Chen Ling, Jinghui Zhang, Pengwei Wang,
- Abstract要約: Emotion Universe (EmoVerse) は、感情や感情に関連する幅広いタスクを扱うためのMLLMである。
EmoVerseは感情状態の根本原因を深く分析することができる。
また、Affective Multitask (AMT)データセットについても紹介する。
- 参考スコア(独自算出の注目度): 5.3848462080869215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment and emotion understanding are essential to applications such as human-computer interaction and depression detection. While Multimodal Large Language Models (MLLMs) demonstrate robust general capabilities, they face considerable challenges in the field of affective computing, particularly in detecting subtle facial expressions and handling complex emotion-related tasks, such as emotion reason inference and understanding emotions in long-context scenarios. Furthermore, there is a lack of a unified MLLM that can effectively handle both sentiment and emotion-related tasks. To address these challenges, we explore multi-task training strategies for MLLMs in affective computing and introduce Emotion Universe (EmoVerse), an MLLM designed to handle a broad spectrum of sentiment and emotion-related tasks. In addition, EmoVerse is capable of deeply analyzing the underlying causes of emotional states. We also introduce the Affective Multitask (AMT) Dataset, which supports multimodal sentiment analysis, multimodal emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction tasks. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in sentiment and emotion-related tasks. The code is available at https://github.com/liaolea/EmoVerse.
- Abstract(参考訳): 感覚と感情の理解は、人間とコンピュータの相互作用や抑うつ検出といった応用に不可欠である。
MLLM(Multimodal Large Language Models)は、堅牢な汎用能力を示すが、特に微妙な表情の検出や、感情の推論や長期コンテキストシナリオにおける感情理解といった複雑な感情関連タスクの処理において、感情的コンピューティングの分野でかなりの課題に直面している。
さらに、感情関連タスクと感情関連タスクの両方を効果的に処理できる統合MLLMが欠如している。
これらの課題に対処するために、感情コンピューティングにおけるMLLMのマルチタスクトレーニング戦略を探求し、幅広い感情や感情関連タスクを扱うように設計された感情ユニバース(EmoVerse)を導入する。
さらに、EmoVerseは感情状態の根本原因を深く分析することができる。
また、マルチモーダル感情分析、マルチモーダル感情認識、表情認識、感情理由推論、感情因果抽出タスクをサポートするAffective Multitask (AMT)データセットも導入した。
大規模な実験では、EmoVerseは既存の方法よりも優れており、感情や感情に関連したタスクの最先端の結果が得られている。
コードはhttps://github.com/liaolea/EmoVerse.comで公開されている。
関連論文リスト
- AI with Emotions: Exploring Emotional Expressions in Large Language Models [0.0]
大きな言語モデル(LLM)は、特定の感情状態で質問に答えるエージェントとしてロールプレイを行う。
ラッセルの「サイクムプレックス」モデルは、眠気(覚醒)と快楽(静寂)の軸に沿った感情を特徴づける。
評価の結果, 生成した回答の感情状態は, 仕様と一致していた。
論文 参考訳(メタデータ) (2025-04-20T18:49:25Z) - MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
この研究は、あいまいな感情を認識する上でのLarge Language Models(LLM)の可能性を探究する最初のものである。
我々はゼロショットと少数ショットのプロンプトを設計し、過去の対話を曖昧な感情認識のための文脈情報として組み込んだ。
論文 参考訳(メタデータ) (2024-09-26T23:25:21Z) - EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
マルチモーダル・大規模言語モデル(MLLM)は、目的とするマルチモーダル認識タスクにおいて顕著な性能を達成している。
しかし、主観的、感情的にニュアンスのあるマルチモーダルコンテンツを解釈する能力はほとんど解明されていない。
EmoLLMは、マルチモーダルな感情理解のための新しいモデルであり、2つのコア技術が組み込まれている。
論文 参考訳(メタデータ) (2024-06-24T08:33:02Z) - Emotion-LLaMA: Multimodal Emotion Recognition and Reasoning with Instruction Tuning [55.127202990679976]
28,618粒の粗粒と4,487粒の細粒のアノテートサンプルを含むMERRデータセットを導入した。
このデータセットは、さまざまなシナリオから学習し、現実のアプリケーションに一般化することを可能にする。
本研究では,感情特異的エンコーダによる音声,視覚,テキスト入力をシームレスに統合するモデルであるEmotion-LLaMAを提案する。
論文 参考訳(メタデータ) (2024-06-17T03:01:22Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - UniMEEC: Towards Unified Multimodal Emotion Recognition and Emotion Cause [18.99103120856208]
感情と感情の因果関係を明らかにするために,統一マルチモーダル感情認識・感情因果分析フレームワーク(UniMEEC)を提案する。
UniMEECは、MERCおよびMECPEタスクをマスク予測問題として再構成し、因果プロンプトテンプレートでそれらを統一する。
4つの公開ベンチマークデータセットの実験結果は、MERCおよびMECPEタスクのモデル性能を検証する。
論文 参考訳(メタデータ) (2024-03-30T15:59:17Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。