論文の概要: Using Large Language Models for Parametric Shape Optimization
- arxiv url: http://arxiv.org/abs/2412.08072v1
- Date: Wed, 11 Dec 2024 03:35:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:17.644041
- Title: Using Large Language Models for Parametric Shape Optimization
- Title(参考訳): パラメトリック形状最適化における大規模言語モデルの利用
- Authors: Xinxin Zhang, Zhuoqun Xu, Guangpu Zhu, Chien Ming Jonathan Tay, Yongdong Cui, Boo Cheong Khoo, Lailai Zhu,
- Abstract要約: パラメータ化工学設計の最適形状を決定するための最適化フレームワーク LLM-PSO を開発した。
我々の予備調査は、LLMの形状最適化と工学設計をより広範囲に活用するためのさらなる研究を刺激する可能性がある。
- 参考スコア(独自算出の注目度): 2.464331481632096
- License:
- Abstract: Recent advanced large language models (LLMs) have showcased their emergent capability of in-context learning, facilitating intelligent decision-making through natural language prompts without retraining. This new machine learning paradigm has shown promise in various fields, including general control and optimization problems. Inspired by these advancements, we explore the potential of LLMs for a specific and essential engineering task: parametric shape optimization (PSO). We develop an optimization framework, LLM-PSO, that leverages an LLM to determine the optimal shape of parameterized engineering designs in the spirit of evolutionary strategies. Utilizing the ``Claude 3.5 Sonnet'' LLM, we evaluate LLM-PSO on two benchmark flow optimization problems, specifically aiming to identify drag-minimizing profiles for 1) a two-dimensional airfoil in laminar flow, and 2) a three-dimensional axisymmetric body in Stokes flow. In both cases, LLM-PSO successfully identifies optimal shapes in agreement with benchmark solutions. Besides, it generally converges faster than other classical optimization algorithms. Our preliminary exploration may inspire further investigations into harnessing LLMs for shape optimization and engineering design more broadly.
- Abstract(参考訳): 近年の先進的な大規模言語モデル(LLM)は、文脈内学習の創発的な能力を示し、自然言語のプロンプトによるインテリジェントな意思決定を、再学習なしに促進している。
この新しい機械学習パラダイムは、一般的な制御や最適化の問題など、さまざまな分野において有望であることを示している。
これらの進歩にインスパイアされた我々は、パラメトリック形状最適化(PSO)という、特異かつ本質的なエンジニアリングタスクのためのLLMの可能性を探究する。
進化戦略の精神におけるパラメータ化工学設計の最適形状を決定するために,LLMを利用した最適化フレームワーク LLM-PSO を開発した。
Claude 3.5 Sonnet'' の LLM を用いて、2つのベンチマークフロー最適化問題に対して LLM-PSO を評価する。
1)ラミナールフローにおける二次元翼,及び
2)ストークス流中の3次元軸対称体。
どちらの場合も、LLM-PSOはベンチマークソリューションと一致して最適な形状を識別できる。
また、一般に他の古典最適化アルゴリズムよりも高速に収束する。
我々の予備調査は、LLMの形状最適化と工学設計をより広範囲に活用するためのさらなる研究を刺激する可能性がある。
関連論文リスト
- LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
開発者によって書かれたコードは、通常効率上の問題に悩まされ、様々なパフォーマンス上のバグを含んでいる。
最近の研究は、タスクをシーケンス生成問題とみなし、大規模言語モデル(LLM)のようなディープラーニング(DL)技術を活用している。
改良された最適化手法の反復的洗練と発見を可能にする,SBLLM という検索ベース LLM フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T06:59:46Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
グラデーションベースとハイレベルなLLMは、協調最適化フレームワークを効果的に組み合わせることができることを示す。
本稿では,これらを相互に補完し,組み合わせた最適化フレームワークを効果的に連携させることができることを示す。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - When Large Language Model Meets Optimization [7.822833805991351]
大規模言語モデル(LLM)は、インテリジェントなモデリングと最適化における戦略的意思決定を容易にする。
本稿では,LLMと最適化アルゴリズムの組み合わせの進展と可能性について概説する。
論文 参考訳(メタデータ) (2024-05-16T13:54:37Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
大規模言語モデル(LLM)は、顕著な推論能力を示している。
本稿では,LLMが様々なシナリオにまたがるゼロショット最適化能力を有していることを主張する。
LLMを用いた数値最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T13:57:37Z) - LLaMoCo: Instruction Tuning of Large Language Models for Optimization
Code Generation [26.975412742800614]
我々はLLaMoCoを紹介した。LLaMoCoは、大規模言語モデルをコード・コード方式で最適化問題を解くために設計した最初の命令チューニングフレームワークである。
具体的には、よく記述された問題プロンプトと効果的な最適化コードを含む包括的命令セットを確立する。
LLaMoCoにより微調整された CodeGen (350M) モデルでは, GPT-4 Turbo よりも優れた最適化性能が得られた。
論文 参考訳(メタデータ) (2024-03-02T08:21:59Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - Symbolic Learning to Optimize: Towards Interpretability and Scalability [113.23813868412954]
近年のL2O(Learning to Optimize)研究は,複雑なタスクに対する最適化手順の自動化と高速化に期待できる道のりを示唆している。
既存のL2Oモデルは、ニューラルネットワークによる最適化ルールをパラメータ化し、メタトレーニングを通じてそれらの数値ルールを学ぶ。
本稿では,L2Oの総合的な記号表現と解析の枠組みを確立する。
そこで本稿では,大規模問題にメタトレーニングを施す軽量なL2Oモデルを提案する。
論文 参考訳(メタデータ) (2022-03-13T06:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。