Quantum geometric tensor and wavepacket dynamics in two-dimensional non-Hermitian systems
- URL: http://arxiv.org/abs/2412.08141v2
- Date: Mon, 17 Feb 2025 04:46:06 GMT
- Title: Quantum geometric tensor and wavepacket dynamics in two-dimensional non-Hermitian systems
- Authors: Y. -M. Robin Hu, Elena A. Ostrovskaya, Eliezer Estrecho,
- Abstract summary: We investigate a wave-packet dynamics in two-band non-Hermitian systems to elucidate how non-Hermiticity affects the definition of QGT.
Our results suggest that two different generalizations of the QGT, one defined using only the right eigenstates and the other one using both the left and right eigenstates, both play a significant role in wave-packet dynamics.
- Score: 0.0
- License:
- Abstract: The quantum geometric tensor (QGT) characterizes the local geometry of quantum states, and its components directly account for the dynamical effects observed, e.g., in condensed matter systems. In this work, we address the problem of extending the QGT formalism to non-Hermitian systems with gain and loss. In particular, we investigate a wave-packet dynamics in two-band non-Hermitian systems to elucidate how non-Hermiticity affects the definition of QGT. We employ first-order perturbation theory to account for non-adiabatic corrections due to interband mixing. Our results suggest that two different generalizations of the QGT, one defined using only the right eigenstates and the other one using both the left and right eigenstates, both play a significant role in wave-packet dynamics. We then determine the accuracy of the perturbative approach by simulating a wave-packet dynamics in a well studied physical non-Hermitian system -- exciton polaritons in a semiconductor microcavity. Our work aids deeper understanding of quantum geometry and dynamical behaviour in non-Hermitian systems.
Related papers
- Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories [103.95523007319937]
We study the dynamics of local excitations in a lattice of superconducting qubits.
For confined excitations, the magnetic field induces a tension in the string connecting them.
Our method allows us to experimentally image string dynamics in a (2+1)D LGT.
arXiv Detail & Related papers (2024-09-25T17:59:05Z) - Coarse-grained dynamics in quantum many-body systems using the maximum entropy principle [0.46873264197900916]
We construct an inverse map that assigns a microscopic state to a coarse-grained state based on the maximum entropy principle.
We investigate two-qubit systems, with swap and controlled-not gates, and $n$-qubit systems, configured either in an Ising spin chain or with all-to-all interactions.
We find that these dynamics exhibit atypical quantum behavior, such as non-linearity and non-Markovianity.
arXiv Detail & Related papers (2024-07-16T17:11:14Z) - Quantum kinetics of quenched two-dimensional Bose superfluids [0.0]
We study theoretically the non-equilibrium dynamics of a two-dimensional (2D) uniform Bose superfluid following a quantum quench.
We derive quantum kinetic equations for the low-energy phononic excitations of the system and characterize both their normal and anomalous momentum distributions.
arXiv Detail & Related papers (2023-02-21T15:39:49Z) - Anatomy of Dynamical Quantum Phase Transitions [0.0]
We study periodic dynamical quantum phase transitions (DQPTs) directly connected to the zeros of a Landau order parameter (OP)
We find that a DQPT signals a change in the dominant contribution to the wave function in the degenerate initial-state manifold.
Our work generalizes previous results and reveals that, in general, periodic DQPTs comprise complex many-body dynamics fundamentally beyond that of two-level systems.
arXiv Detail & Related papers (2022-10-05T18:00:00Z) - Experimental quantum simulation of non-Hermitian dynamical topological
states using stochastic Schr\"odinger equation [8.374675687855248]
Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics.
We show a feasible quantum simulation approach for dissipative quantum dynamics with Schr"odinger equation.
arXiv Detail & Related papers (2022-06-30T08:48:25Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.