SecureNT: A Practical Framework for Efficient Topology Protection and Monitoring
- URL: http://arxiv.org/abs/2412.08177v1
- Date: Wed, 11 Dec 2024 08:07:40 GMT
- Title: SecureNT: A Practical Framework for Efficient Topology Protection and Monitoring
- Authors: Chengze Du, Jibin Shi,
- Abstract summary: Network tomography plays a crucial role in network monitoring and management.
Topology information can be inferred through end-to-end measurements using various inference algorithms.
Existing protection methods attempt to secure topology information by manipulating end-to-end delay measurements.
This paper presents a novel privacy-preserving framework that addresses these limitations.
- Score: 0.0
- License:
- Abstract: Network tomography plays a crucial role in network monitoring and management, where network topology serves as the fundamental basis for various tomography tasks including traffic matrix estimation and link performance inference. The topology information, however, can be inferred through end-to-end measurements using various inference algorithms, posing significant security risks to network infrastructure. While existing protection methods attempt to secure topology information by manipulating end-to-end delay measurements, they often require complex computation and sophisticated modification strategies, making real-time protection challenging. Moreover, these delay-based modifications typically render the measurements unusable for network monitoring, even by trusted users, as the manipulated delays distort the actual network performance characteristics. This paper presents a novel privacy-preserving framework that addresses these limitations. Our approach provides efficient topology protection while maintaining the utility of measurements for authorized network monitoring. Through extensive evaluation on both simulated and real-world networks topology, we demonstrate that our framework achieves superior privacy protection compared to existing methods while enabling trusted users to effectively monitor network performance. Our solution offers a practical approach for organizations to protect sensitive topology information without sacrificing their network monitoring capabilities.
Related papers
- Simplicity over Complexity: An ARN-Based Intrusion Detection Method for Industrial Control Network [14.146159961276615]
Industrial control network (ICN) is characterized by real-time responsiveness and reliability.
ICN struggles with some challenges, such as malicious user intrusion and hacker attack.
arXiv Detail & Related papers (2024-12-19T09:20:39Z) - Building Hybrid B-Spline And Neural Network Operators [0.0]
Control systems are indispensable for ensuring the safety of cyber-physical systems (CPS)
We propose a novel strategy that combines the inductive bias of B-splines with data-driven neural networks to facilitate real-time predictions of CPS behavior.
arXiv Detail & Related papers (2024-06-06T21:54:59Z) - Seagull: Privacy preserving network verification system [0.0]
This paper introduces a novel approach to verify the correctness of configurations in the internet backbone governed by the BGP protocol.
Not only does our proposed solution effectively address scalability concerns, but it also establishes a robust privacy framework.
arXiv Detail & Related papers (2024-02-14T05:56:51Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
Deep neural networks exhibit excellent performance in computer vision tasks, but their vulnerability to real-world adversarial attacks raises serious security concerns.
This paper proposes an efficient attention-based defense mechanism that exploits adversarial channel-attention to quickly identify and track malicious objects in shallow network layers.
It also introduces an efficient multi-frame defense framework, validating its efficacy through extensive experiments aimed at evaluating both defense performance and computational cost.
arXiv Detail & Related papers (2023-11-19T00:47:17Z) - Efficient Network Representation for GNN-based Intrusion Detection [2.321323878201932]
The last decades have seen a growth in the number of cyber-attacks with severe economic and privacy damages.
We propose a novel network representation as a graph of flows that aims to provide relevant topological information for the intrusion detection task.
We present a Graph Neural Network (GNN) based framework responsible for exploiting the proposed graph structure.
arXiv Detail & Related papers (2023-09-11T16:10:12Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Resilient Identification of Distribution Network Topology [0.0]
This paper develops a network TI function that relies only on the measurements available to DERMS.
The propounded method is able to identify the network switching configuration, as well as the status of protective devices.
Having a low computational burden, this approach is fast-track and can be applied in real-time applications.
arXiv Detail & Related papers (2020-11-16T14:23:56Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.