Seagull: Privacy preserving network verification system
- URL: http://arxiv.org/abs/2402.08956v1
- Date: Wed, 14 Feb 2024 05:56:51 GMT
- Title: Seagull: Privacy preserving network verification system
- Authors: Jaber Daneshamooz, Melody Yu, Sucheer Maddury,
- Abstract summary: This paper introduces a novel approach to verify the correctness of configurations in the internet backbone governed by the BGP protocol.
Not only does our proposed solution effectively address scalability concerns, but it also establishes a robust privacy framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The current routing protocol used in the internet backbone is based on manual configuration, making it susceptible to errors. To mitigate these configuration-related issues, it becomes imperative to validate the accuracy and convergence of the algorithm, ensuring a seamless operation devoid of problems. However, the process of network verification faces challenges related to privacy and scalability. This paper addresses these challenges by introducing a novel approach: leveraging privacy-preserving computation, specifically multiparty computation (MPC), to verify the correctness of configurations in the internet backbone, governed by the BGP protocol. Not only does our proposed solution effectively address scalability concerns, but it also establishes a robust privacy framework. Through rigorous analysis, we demonstrate that our approach maintains privacy by not disclosing any information beyond the query result, thus providing a comprehensive and secure solution to the intricacies associated with routing protocol verification in large-scale networks.
Related papers
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach [0.44328715570014865]
This paper introduces a novel decentralized federated anomaly detection scheme based on two main gossip protocols namely Random Walk and Epidemic.
Our approach yields a notable 35% improvement in training time compared to conventional Federated Learning.
arXiv Detail & Related papers (2024-07-20T10:45:06Z) - A Privacy-Preserving Graph Encryption Scheme Based on Oblivious RAM [0.0]
We propose a novel graph encryption scheme designed to mitigate access pattern and query pattern leakage.
Our solution establishes two key security objectives: (1) ensuring that adversaries, when presented with an encrypted graph, remain oblivious to any information regarding the underlying graph, and (2) achieving query indistinguishability by concealing access patterns.
arXiv Detail & Related papers (2024-05-29T16:47:38Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
We propose a knowledge-infused Generative Adversarial Network for generating synthetic network activity data (KiNETGAN)
Our approach enhances the resilience of distributed intrusion detection while addressing privacy concerns.
arXiv Detail & Related papers (2024-05-26T08:02:02Z) - Private Online Community Detection for Censored Block Models [60.039026645807326]
We study the private online change detection problem for dynamic communities, using a censored block model (CBM)
We propose an algorithm capable of identifying changes in the community structure, while maintaining user privacy.
arXiv Detail & Related papers (2024-05-09T12:35:57Z) - Secure Routing for Mobile Ad hoc Networks [2.965855310793378]
We present a route discovery protocol that mitigates the effects of malicious behavior in MANET networks.
Our protocol guarantees that fabricated, compromised, or replayed route replies would either be rejected or never reach back the querying node.
The scheme is robust in the presence of a number of non-colluding nodes.
arXiv Detail & Related papers (2024-03-01T09:50:00Z) - Adversarial Client Detection via Non-parametric Subspace Monitoring in
the Internet of Federated Things [3.280202415151067]
Internet of Federated Things (IoFT) represents a network of interconnected systems with federated learning as the backbone.
We propose an effective non-parametric approach FedRR to address the adversarial attack problem.
Our proposed method is capable of accurately detecting adversarial clients and controlling the false alarm rate under the scenario with no attack occurring.
arXiv Detail & Related papers (2023-10-02T18:25:02Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.