Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
- URL: http://arxiv.org/abs/2412.08193v2
- Date: Wed, 12 Feb 2025 03:22:38 GMT
- Title: Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
- Authors: Xuanze Chen, Jiajun Zhou, Shanqing Yu, Qi Xuan,
- Abstract summary: Graph neural networks excel at graph representation learning but struggle with heterophilous data and long-range dependencies.<n>We propose GNNMoE, a universal model architecture for node classification.<n>We show that GNNMoE performs exceptionally well across various types of graph data, effectively alleviating the over-smoothing issue and global noise.
- Score: 4.129489934631072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks excel at graph representation learning but struggle with heterophilous data and long-range dependencies. And graph transformers address these issues through self-attention, yet face scalability and noise challenges on large-scale graphs. To overcome these limitations, we propose GNNMoE, a universal model architecture for node classification. This architecture flexibly combines fine-grained message-passing operations with a mixture-of-experts mechanism to build feature encoding blocks. Furthermore, by incorporating soft and hard gating layers to assign the most suitable expert networks to each node, we enhance the model's expressive power and adaptability to different graph types. In addition, we introduce adaptive residual connections and an enhanced FFN module into GNNMoE, further improving the expressiveness of node representation. Extensive experimental results demonstrate that GNNMoE performs exceptionally well across various types of graph data, effectively alleviating the over-smoothing issue and global noise, enhancing model robustness and adaptability, while also ensuring computational efficiency on large-scale graphs.
Related papers
- ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion [15.33100217104504]
This paper proposes a novel framework for large-scale graphs named ScaleGNN.
It simultaneously addresses both challenges by adaptively fusing multi-level graph features.
Our approach consistently outperforms state-of-the-art GNN models in both accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-22T14:05:11Z) - Mixture of Decoupled Message Passing Experts with Entropy Constraint for General Node Classification [6.963363358936621]
We propose a universal node classification framework based on the Mixture-of-Experts (MoE) mechanism.
GNNMoE significantly outperforms mainstream GNNs, heterophilous GNNs, and graph transformers in both node classification performance and universality across diverse graph datasets.
arXiv Detail & Related papers (2025-02-12T03:10:26Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
Graph neural networks (GNNs) are gaining popularity for processing graph-structured data.
Existing methods generally use a fixed number of GNN layers to generate representations for all graphs.
We propose the depth adaptive mixture of expert (DA-MoE) method, which incorporates two main improvements to GNN.
arXiv Detail & Related papers (2024-11-05T11:46:27Z) - Design Your Own Universe: A Physics-Informed Agnostic Method for Enhancing Graph Neural Networks [34.16727363891593]
We propose a model-agnostic enhancement framework for Graph Neural Networks (GNNs)
This framework enriches the graph structure by introducing additional nodes and rewiring connections with both positive and negative weights.
We theoretically verify that GNNs enhanced through our approach can effectively circumvent the over-smoothing issue and exhibit robustness against over-squashing.
Empirical validations on benchmarks for homophilic, heterophilic graphs, and long-term graph datasets show that GNNs enhanced by our method significantly outperform their original counterparts.
arXiv Detail & Related papers (2024-01-26T00:47:43Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
Graph neural networks (GNNs) have found extensive applications in learning from graph data.
To bolster the generalization capacity of GNNs, it has become customary to augment training graph structures with techniques like graph augmentations.
This study introduces the concept of Mixture-of-Experts (MoE) to GNNs, with the aim of augmenting their capacity to adapt to a diverse range of training graph structures.
arXiv Detail & Related papers (2023-04-06T01:09:36Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
We use a random graph generator to investigate how the graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs.
We propose a multi- module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs.
arXiv Detail & Related papers (2022-09-14T12:13:59Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Breaking the Limit of Graph Neural Networks by Improving the
Assortativity of Graphs with Local Mixing Patterns [19.346133577539394]
Graph neural networks (GNNs) have achieved tremendous success on multiple graph-based learning tasks.
We focus on transforming the input graph into a computation graph which contains both proximity and structural information.
We show that adaptively choosing between structure and proximity leads to improved performance under diverse mixing.
arXiv Detail & Related papers (2021-06-11T19:18:34Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.