論文の概要: Local Features Meet Stochastic Anonymization: Revolutionizing Privacy-Preserving Face Recognition for Black-Box Models
- arxiv url: http://arxiv.org/abs/2412.08276v1
- Date: Wed, 11 Dec 2024 10:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:02:23.285096
- Title: Local Features Meet Stochastic Anonymization: Revolutionizing Privacy-Preserving Face Recognition for Black-Box Models
- Title(参考訳): 確率匿名:ブラックボックスモデルにおけるプライバシ保護顔認証の革新
- Authors: Yuanwei Liu, Chengyu Jia, Ruqi Xiao, Xuemai Jia, Hui Wei, Kui Jiang, Zheng Wang,
- Abstract要約: プライバシー保護顔認証(PPFR)の課題は現在、2つの未解決課題に直面している。
グローバルな特徴の破壊と局所的な特徴の強化により,ブラックボックス環境においても効果的に認識できる。
本手法は,ブラックボックスモデルの平均認識精度94.21%を達成し,プライバシ保護とアンチコンストラクションの両面で既存手法よりも優れていた。
- 参考スコア(独自算出の注目度): 54.88064975480573
- License:
- Abstract: The task of privacy-preserving face recognition (PPFR) currently faces two major unsolved challenges: (1) existing methods are typically effective only on specific face recognition models and struggle to generalize to black-box face recognition models; (2) current methods employ data-driven reversible representation encoding for privacy protection, making them susceptible to adversarial learning and reconstruction of the original image. We observe that face recognition models primarily rely on local features ({e.g., face contour, skin texture, and so on) for identification. Thus, by disrupting global features while enhancing local features, we achieve effective recognition even in black-box environments. Additionally, to prevent adversarial models from learning and reversing the anonymization process, we adopt an adversarial learning-based approach with irreversible stochastic injection to ensure the stochastic nature of the anonymization. Experimental results demonstrate that our method achieves an average recognition accuracy of 94.21\% on black-box models, outperforming existing methods in both privacy protection and anti-reconstruction capabilities.
- Abstract(参考訳): プライバシ保存顔認識(PPFR)の課題は,(1) 既存の手法は特定の顔認識モデルにのみ有効であり,ブラックボックスの顔認識モデルへの一般化に苦慮している,(2) プライバシ保護のためにデータ駆動の可逆的表現符号化を採用して,相手の学習や元のイメージの再構築を妨げている,という2つの未解決課題に直面している。
顔の認識モデルは、主に識別に局所的特徴({e g , face contour, skin texture など)に依存している。
したがって,グローバルな特徴を破壊し,局所的な特徴を増強することにより,ブラックボックス環境においても効果的に認識できる。
さらに, 敵モデルによる匿名化過程の学習と逆転を防止するために, 確率的注入を不可逆的に行う対向学習に基づくアプローチを採用し, 匿名化の確率的性質を確実にする。
実験の結果,ブラックボックスモデルの平均認識精度は94.21 %であり,プライバシ保護とアンチコンストラクションの両方において既存手法よりも優れていた。
関連論文リスト
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
視覚的品質を維持しつつ、転送性を改善した新しい顔プライバシー保護方式を提案する。
生成モデルの潜在空間をトラバースするために,まずグローバルな逆潜時探索を利用する。
次に、視覚的アイデンティティ情報を保存するための重要なランドマーク正規化モジュールを導入する。
論文 参考訳(メタデータ) (2024-07-18T02:16:11Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
顔画像は、各ユーザのアイデンティティ情報に関連付けられた、敏感なバイオメトリック属性である。
本稿では,顔認識の入力次元を低減するために,ハイブリッド周波数-カラー融合法を提案する。
1:Nの検証シナリオの最先端よりも約2.6%から4.2%高い精度を持つ。
論文 参考訳(メタデータ) (2024-01-24T11:27:32Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Controllable Inversion of Black-Box Face Recognition Models via
Diffusion [8.620807177029892]
我々は,事前学習した顔認識モデルの潜在空間を,完全なモデルアクセスなしで反転させる作業に取り組む。
本研究では,条件付き拡散モデル損失が自然発生し,逆分布から効果的にサンプル化できることを示す。
本手法は,生成過程を直感的に制御できる最初のブラックボックス顔認識モデル逆変換法である。
論文 参考訳(メタデータ) (2023-03-23T03:02:09Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - RAF: Recursive Adversarial Attacks on Face Recognition Using Extremely
Limited Queries [2.8532545355403123]
近年の顔認識に対する敵対的攻撃の成功は、顔認識モデルの顕著な進歩にもかかわらず、認識と認識のための人間の知性にはまだ及ばないことを示している。
本稿では,ターゲットモデルを騙すために,極めて限られたクエリ数を必要とする自動顔整形を提案する。
決定に基づくブラックボックス攻撃設定における提案手法のロバスト性を評価する。
論文 参考訳(メタデータ) (2022-07-04T00:22:45Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
最先端の一般的な顔認識モデルは、隠蔽された顔画像に対してうまく一般化しない。
本稿では,1つのエンドツーエンドのディープニューラルネットワークに基づいて,オクルージョンに頑健な新しい顔認識手法を提案する。
我々のアプローチは、深い畳み込みニューラルネットワークから破損した特徴を発見し、動的に学習されたマスクによってそれらをきれいにする。
論文 参考訳(メタデータ) (2021-08-21T09:08:41Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。