論文の概要: iFADIT: Invertible Face Anonymization via Disentangled Identity Transform
- arxiv url: http://arxiv.org/abs/2501.04390v2
- Date: Thu, 16 Jan 2025 07:58:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:07:36.826460
- Title: iFADIT: Invertible Face Anonymization via Disentangled Identity Transform
- Title(参考訳): iFADIT: アンタングル型ID変換による非可逆顔匿名化
- Authors: Lin Yuan, Kai Liang, Xiong Li, Tao Wu, Nannan Wang, Xinbo Gao,
- Abstract要約: 顔の匿名化は、個人のプライバシーを保護するために顔の視覚的アイデンティティを隠すことを目的としている。
Invertible Face Anonymization の頭字語 iFADIT を Disentangled Identity Transform を用いて提案する。
- 参考スコア(独自算出の注目度): 51.123936665445356
- License:
- Abstract: Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy. Traditional methods like blurring and pixelation can largely remove identifying features, but these techniques significantly degrade image quality and are vulnerable to deep reconstruction attacks. Generative models have emerged as a promising solution for anonymizing faces while preserving a natural appearance. However, many still face limitations in visual quality and often overlook the potential to recover the original face from the anonymized version, which can be valuable in specific contexts such as image forensics. This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform. The framework features a disentanglement architecture coupled with a secure flow-based model: the former decouples identity information from non-identifying attributes, while the latter transforms the decoupled identity into an anonymized version in an invertible manner controlled by a secret key. The anonymized face can then be reconstructed based on a pre-trained StyleGAN that ensures high image quality and realistic facial details. Recovery of the original face (aka de-anonymization) is possible upon the availability of the matching secret, by inverting the anonymization process based on the same set of model parameters. Furthermore, a dedicated secret-key mechanism along with a dual-phase training strategy is devised to ensure the desired properties of face anonymization. Qualitative and quantitative experiments demonstrate the superiority of the proposed approach in anonymity, reversibility, security, diversity, and interpretability over competing methods.
- Abstract(参考訳): 顔の匿名化は、個人のプライバシーを保護するために顔の視覚的アイデンティティを隠すことを目的としている。
ぼやけやピクセル化といった従来の手法は、特徴の識別をほとんど排除するが、これらの技術は画像の品質を著しく低下させ、深い再構築攻撃に対して脆弱である。
生成モデルは、自然な外観を維持しながら顔を匿名化するための有望なソリューションとして現れてきた。
しかし、多くの人はまだ視覚的品質の限界に直面しており、しばしば匿名化バージョンから元の顔を取り戻す可能性を見落としている。
Invertible Face Anonymization の頭字語 iFADIT を Disentangled Identity Transform を用いて提案する。
前者は識別されていない属性から識別情報を分離し、後者は秘密鍵によって制御される可逆的な方法で、分離されたIDを匿名化されたバージョンに変換する。
匿名化された顔は、トレーニング済みのStyleGANに基づいて再構成され、高い画質と現実的な顔の詳細が保証される。
同一モデルパラメータのセットに基づいて匿名化処理を反転させることにより、一致する秘密が利用可能になると、元の顔(いわゆる匿名化)の復元が可能となる。
さらに、顔匿名化の望ましい特性を確保するために、二相訓練戦略とともに専用秘密鍵機構を考案した。
定性的かつ定量的な実験は、競合する手法よりも匿名性、可逆性、セキュリティ、多様性、解釈可能性において提案されたアプローチの優位性を示す。
関連論文リスト
- ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
深層学習に基づく顔操作の誤用は、公民権に対する潜在的な脅威となる。
この不正行為を防ぐため、プロアクティブな防御技術が提案され、操作プロセスを妨害した。
我々は,ID-Guardと呼ばれる,顔操作と戦うための新しい普遍的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T09:30:08Z) - G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation [56.46932751058042]
我々は、テキストから画像への拡散モデルのための学習可能なプロンプトプレフィックスをトレーニングし、匿名化された顔のアイデンティティを生成するよう強制する。
実験では,非同一性固有の画像生成の品質を損なうことなく,特定の個人を匿名化するAPLの匿名化性能を実証した。
論文 参考訳(メタデータ) (2024-05-27T07:38:26Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - GANonymization: A GAN-based Face Anonymization Framework for Preserving
Emotional Expressions [43.017036538109274]
GANonymizationは、表情保存能力を持つ新しい顔匿名化フレームワークである。
提案手法は, 顔の高レベル表現をベースとして, GAN(Generative Adversarial Network)に基づく匿名化バージョンに合成する。
論文 参考訳(メタデータ) (2023-05-03T14:22:48Z) - Fantômas: Understanding Face Anonymization Reversibility [3.18294468240512]
顔画像は、個人を特定し、それらの個人情報を推測するのに使用できる豊富な情報源である。
このプライバシーリスクを軽減するために、匿名化では、鮮明な画像を変換して機密情報を難読化している。
匿名化画像を実際の入力に類似させることは、匿名化の欠陥を示す最強の指標である。
論文 参考訳(メタデータ) (2022-10-19T15:28:52Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
本稿では,歩行者画像における新たなプライバシー保護匿名化問題について検討する。
認証されたモデルに対する個人識別情報(PII)を保存し、PIIが第三者によって認識されないようにする。
本稿では,全体匿名画像の可逆的生成が可能な共同学習可逆匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T07:04:16Z) - Face Anonymization by Manipulating Decoupled Identity Representation [5.26916168336451]
本稿では,顔画像の識別情報をわずかな修正で漏洩から保護する手法を提案する。
具体的には、生成的敵ネットワークの力を利用する他の顔属性と同一性表現を分離する。
モデルの不整合性を回避し、匿名性生成(AIG)を効果的に行う手法を提案する。
論文 参考訳(メタデータ) (2021-05-24T07:39:54Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
顔の非識別、別名顔の匿名化は、実際のアイデンティティが隠されている間、同様の外観と同じ背景を持つ別の画像を生成することを指します。
我々は,データ駆動型ディープニューラルネットワークと差分プライバシー機構を組み合わせた顔匿名化フレームワークであるIdentityDPを提案する。
我々のモデルは、顔の識別関連情報を効果的に難読化し、視覚的類似性を保ち、高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2021-03-02T14:26:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。