論文の概要: Optimisation of the Accelerator Control by Reinforcement Learning: A Simulation-Based Approach
- arxiv url: http://arxiv.org/abs/2503.09665v1
- Date: Wed, 12 Mar 2025 16:57:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:51:10.115164
- Title: Optimisation of the Accelerator Control by Reinforcement Learning: A Simulation-Based Approach
- Title(参考訳): 強化学習による加速器制御の最適化:シミュレーションに基づくアプローチ
- Authors: Anwar Ibrahim, Denis Derkach, Alexey Petrenko, Fedor Ratnikov, Maxim Kaledin,
- Abstract要約: 本研究では,Reinforcement Learning(RL)と統合されたシミュレーションベースのフレームワークの構築を目的とする。
シミュレーションバックエンドとして textttElegant を用い,RL アルゴリズムとアクセルシミュレーションの相互作用を簡略化する Python ラッパーを開発した。
提案したRLフレームワークは物理学者のコパイロットとして機能し,ビームライン性能の向上,チューニング時間短縮,運用効率の向上など,インテリジェントな提案を行う。
- 参考スコア(独自算出の注目度): 0.615163395430594
- License:
- Abstract: Optimizing accelerator control is a critical challenge in experimental particle physics, requiring significant manual effort and resource expenditure. Traditional tuning methods are often time-consuming and reliant on expert input, highlighting the need for more efficient approaches. This study aims to create a simulation-based framework integrated with Reinforcement Learning (RL) to address these challenges. Using \texttt{Elegant} as the simulation backend, we developed a Python wrapper that simplifies the interaction between RL algorithms and accelerator simulations, enabling seamless input management, simulation execution, and output analysis. The proposed RL framework acts as a co-pilot for physicists, offering intelligent suggestions to enhance beamline performance, reduce tuning time, and improve operational efficiency. As a proof of concept, we demonstrate the application of our RL approach to an accelerator control problem and highlight the improvements in efficiency and performance achieved through our methodology. We discuss how the integration of simulation tools with a Python-based RL framework provides a powerful resource for the accelerator physics community, showcasing the potential of machine learning in optimizing complex physical systems.
- Abstract(参考訳): 加速器制御の最適化は、実験粒子物理学において重要な課題であり、かなりの手作業と資源支出を必要とする。
従来のチューニング手法は、しばしば時間がかかり、専門家の入力に依存し、より効率的なアプローチの必要性を強調します。
本研究では,これらの課題に対処するため,Reinforcement Learning (RL)と統合されたシミュレーションベースのフレームワークを構築することを目的とする。
シミュレーションバックエンドとしてtexttt{Elegant} を用い,RLアルゴリズムとアクセルシミュレーションの相互作用を簡略化し,シームレスな入力管理,シミュレーション実行,出力解析を可能にするPythonラッパーを開発した。
提案したRLフレームワークは物理学者のコパイロットとして機能し,ビームライン性能の向上,チューニング時間短縮,運用効率の向上など,インテリジェントな提案を行う。
概念実証として, 加速器制御問題へのRLアプローチの適用を実証し, 提案手法により達成した効率と性能の向上を強調した。
シミュレーションツールをPythonベースのRLフレームワークに統合することで、加速器物理学コミュニティの強力なリソースが提供され、複雑な物理システムを最適化する機械学習の可能性を示す。
関連論文リスト
- SINERGYM -- A virtual testbed for building energy optimization with Reinforcement Learning [40.71019623757305]
本稿では、大規模ビルディングシミュレーション、データ収集、継続的制御、実験監視のためのオープンソースのPythonベースの仮想テストベッドであるSinergymについて述べる。
論文 参考訳(メタデータ) (2024-12-11T11:09:13Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
本稿では,知識インフォームドモデルに基づく残留強化学習フレームワークを提案する。
交通専門家の知識を仮想環境モデルに統合し、基本力学にIntelligent Driver Model(IDM)、残留力学にニューラルネットワークを使用する。
本稿では,従来の制御手法を残差RLと組み合わせて,スクラッチから学習することなく,効率的な学習と政策最適化を容易にする新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-08-30T16:16:57Z) - Model-based deep reinforcement learning for accelerated learning from flow simulations [0.0]
フロー制御アプリケーションにおけるモデルベース強化学習の利点を実証する。
具体的には, 流れシミュレーションから採取した軌道と, 環境モデルのアンサンブルから採取した軌道とを交互に組み合わせることで, 政策を最適化する。
モデルベースの学習は、流動的なピンボールテストケースに対して、トレーニング全体の時間を最大85%削減する。
論文 参考訳(メタデータ) (2024-02-26T13:01:45Z) - Transfer of Reinforcement Learning-Based Controllers from Model- to
Hardware-in-the-Loop [1.8218298349840023]
強化学習は、自律的な訓練エージェントが複雑な制御タスクを実行する大きな可能性を秘めている。
組み込みシステム機能開発においてRLを効果的に利用するには、生成されたエージェントが現実世界のアプリケーションを扱う必要がある。
本研究は,Transfer Learning(TL)とX-in-the-Loop(XiL)シミュレーションを組み合わせることで,RLエージェントのトレーニングプロセスの高速化に重点を置いている。
論文 参考訳(メタデータ) (2023-10-25T09:13:12Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Data-Driven Offline Optimization For Architecting Hardware Accelerators [89.68870139177785]
PRIMEと呼ばれるハードウェアアクセラレータを設計するための,データ駆動型オフライン最適化手法を開発した。
PRIMEは、最先端のシミュレーション駆動方式の性能を約1.54倍と1.20倍に改善し、必要な総シミュレーション時間をそれぞれ93%と99%削減する。
さらにPRIMEは、ゼロショット設定で見えないアプリケーションのための効果的なアクセラレーターを設計し、シミュレーションベースの手法を1.26倍に向上させた。
論文 参考訳(メタデータ) (2021-10-20T17:06:09Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。