論文の概要: Embedding and Enriching Explicit Semantics for Visible-Infrared Person Re-Identification
- arxiv url: http://arxiv.org/abs/2412.08406v1
- Date: Wed, 11 Dec 2024 14:27:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:02:17.452700
- Title: Embedding and Enriching Explicit Semantics for Visible-Infrared Person Re-Identification
- Title(参考訳): 可視赤外人物再同定のための埋め込みと明示的意味論の強化
- Authors: Neng Dong, Shuanglin Yan, Liyan Zhang, Jinhui Tang,
- Abstract要約: Visible-infrared person re-identification (VIReID)は、異なるモードで同じ同一の歩行者画像を取得する。
既存の方法は画像のみから視覚的コンテンツを学習するが、高レベルの意味を感知する能力は欠如している。
本稿では,意味的にリッチな横断歩行者表現を学習するための埋め込み・拡張型明示的意味論フレームワークを提案する。
- 参考スコア(独自算出の注目度): 31.011118085494942
- License:
- Abstract: Visible-infrared person re-identification (VIReID) retrieves pedestrian images with the same identity across different modalities. Existing methods learn visual content solely from images, lacking the capability to sense high-level semantics. In this paper, we propose an Embedding and Enriching Explicit Semantics (EEES) framework to learn semantically rich cross-modality pedestrian representations. Our method offers several contributions. First, with the collaboration of multiple large language-vision models, we develop Explicit Semantics Embedding (ESE), which automatically supplements language descriptions for pedestrians and aligns image-text pairs into a common space, thereby learning visual content associated with explicit semantics. Second, recognizing the complementarity of multi-view information, we present Cross-View Semantics Compensation (CVSC), which constructs multi-view image-text pair representations, establishes their many-to-many matching, and propagates knowledge to single-view representations, thus compensating visual content with its missing cross-view semantics. Third, to eliminate noisy semantics such as conflicting color attributes in different modalities, we design Cross-Modality Semantics Purification (CMSP), which constrains the distance between inter-modality image-text pair representations to be close to that between intra-modality image-text pair representations, further enhancing the modality-invariance of visual content. Finally, experimental results demonstrate the effectiveness and superiority of the proposed EEES.
- Abstract(参考訳): Visible-infrared person re-identification (VIReID)は、異なるモードで同じ同一の歩行者画像を取得する。
既存の方法は画像のみから視覚的コンテンツを学習するが、高レベルの意味を感知する能力は欠如している。
本稿では,セマンティックにリッチな横断歩行者表現を学習するためのEmbedding and Enriching Explicit Semantics (EEES)フレームワークを提案する。
我々の方法にはいくつかの貢献がある。
まず、複数の大規模言語ビジョンモデルの協調により、歩行者のための言語記述を自動補完し、画像とテキストのペアを共通の空間に整列させ、明示的な意味論に関連する視覚的内容の学習を行う Explicit Semantics Embedding (ESE) を開発した。
第2に、多視点情報の相補性を認識し、多視点画像テキストペア表現を構築し、その多対多マッチングを確立し、単一のビュー表現に知識を伝達し、欠落したクロスビューセマンティクスで視覚コンテンツを補償するクロスビューセマンティクス補償(CVSC)を提案する。
第3に、異なるモダリティにおける色属性の矛盾などのノイズを排除し、モダリティ間画像-テキスト対表現間の距離をモダリティ間画像-テキスト対表現間の距離に制限し、視覚内容のモダリティ-不変性をさらに向上させる、クロスモダリティ・セマンティック・パーフィケーション(CMSP)を設計する。
最後に、実験結果により、提案した脳波の有効性と優位性を示す。
関連論文リスト
- CLIP-Driven Semantic Discovery Network for Visible-Infrared Person
Re-Identification [39.262536758248245]
モダリティ間の同一性マッチングは、VIReIDにおいて重要な課題である。
本稿では,CLIP-Driven Semantic Discovery Network(CSDN)を提案する。
論文 参考訳(メタデータ) (2024-01-11T10:20:13Z) - Collaborative Group: Composed Image Retrieval via Consensus Learning from Noisy Annotations [67.92679668612858]
我々は,集団が個人より優れているという心理的概念に触発されたコンセンサスネットワーク(Css-Net)を提案する。
Css-Netは,(1)コンセンサスモジュールと4つのコンセンサスモジュール,(2)コンセンサス間の相互作用の学習を促進するKulback-Leibler分散損失の2つのコアコンポーネントから構成される。
ベンチマークデータセット、特にFashionIQでは、Css-Netが大幅に改善されている。特に、R@10が2.77%、R@50が6.67%増加し、リコールが大幅に向上している。
論文 参考訳(メタデータ) (2023-06-03T11:50:44Z) - Revisiting Multimodal Representation in Contrastive Learning: From Patch
and Token Embeddings to Finite Discrete Tokens [76.40196364163663]
本稿では,CLIPのような学習型視覚言語事前学習手法を提案する。
提案手法は,より包括的な表現を学習し,意味のある相互対応を捉えることができることを示す。
論文 参考訳(メタデータ) (2023-03-27T00:58:39Z) - CISum: Learning Cross-modality Interaction to Enhance Multimodal
Semantic Coverage for Multimodal Summarization [2.461695698601437]
本稿ではマルチタスク・クロスモーダル学習フレームワーク(CISum)を提案する。
視覚的意味論を得るために,テキストの内容との相関に基づいて画像から視覚的記述へと変換する。
そして、視覚的記述とテキスト内容とを融合させてテキスト要約を生成し、マルチモーダルコンテンツのセマンティクスをキャプチャする。
論文 参考訳(メタデータ) (2023-02-20T11:57:23Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - Multi-Granularity Cross-Modality Representation Learning for Named
Entity Recognition on Social Media [11.235498285650142]
ソーシャルメディア上の名前付きエンティティ認識(NER)とは、構造化されていない自由なコンテンツからエンティティを発見し分類することを指す。
本研究は,多粒性クロスモダリティ表現学習を導入する。
実験の結果,提案手法は2つのツイートのベンチマークデータセット上でSOTAあるいはSOTAの性能を近似することができることがわかった。
論文 参考訳(メタデータ) (2022-10-19T15:14:55Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
大規模な視覚言語による事前学習は、幅広い下流タスクにおいて顕著な進歩を見せている。
既存の手法は主に、画像とテキストのグローバルな表現の類似性によって、モーダル間のアライメントをモデル化する。
ゲーム理論的相互作用の新たな視点から, 微粒なセマンティックアライメントを学習する, 微粒なセマンティックなvisiOn-langUage PrEトレーニングフレームワークであるLOを導入する。
論文 参考訳(メタデータ) (2022-08-04T07:51:48Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Consensus-Aware Visual-Semantic Embedding for Image-Text Matching [69.34076386926984]
画像テキストマッチングは、視覚と言語をブリッジする上で中心的な役割を果たす。
既存のアプローチのほとんどは、表現を学ぶためにイメージテキストインスタンスペアのみに依存しています。
コンセンサスを意識したビジュアル・セマンティック・エンベディングモデルを提案し,コンセンサス情報を組み込む。
論文 参考訳(メタデータ) (2020-07-17T10:22:57Z) - MHSAN: Multi-Head Self-Attention Network for Visual Semantic Embedding [6.4901484665257545]
本稿では,視覚的およびテキスト的データの様々なコンポーネントを,データの重要な部分に参加することによってキャプチャする,新しいマルチヘッド自己注意ネットワークを提案する。
提案手法は,MS-COCOおよびFlicker30Kデータセット上の画像テキスト検索タスクにおける最新の結果を実現する。
論文 参考訳(メタデータ) (2020-01-11T05:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。