Robustness of Graph Classification: failure modes, causes, and noise-resistant loss in Graph Neural Networks
- URL: http://arxiv.org/abs/2412.08419v1
- Date: Wed, 11 Dec 2024 14:35:37 GMT
- Title: Robustness of Graph Classification: failure modes, causes, and noise-resistant loss in Graph Neural Networks
- Authors: Farooq Ahmad Wani, Maria Sofia Bucarelli, Andrea Giuseppe Di Francesco, Oleksandr Pryymak, Fabrizio Silvestri,
- Abstract summary: Graph Neural Networks (GNNs) are powerful at solving graph classification tasks, yet applied problems often contain noisy labels.
We study GNN robustness to label noise, demonstrate GNN failure modes when models struggle to generalise on low-order graphs.
- Score: 18.556227061863904
- License:
- Abstract: Graph Neural Networks (GNNs) are powerful at solving graph classification tasks, yet applied problems often contain noisy labels. In this work, we study GNN robustness to label noise, demonstrate GNN failure modes when models struggle to generalise on low-order graphs, low label coverage, or when a model is over-parameterized. We establish both empirical and theoretical links between GNN robustness and the reduction of the total Dirichlet Energy of learned node representations, which encapsulates the hypothesized GNN smoothness inductive bias. Finally, we introduce two training strategies to enhance GNN robustness: (1) by incorporating a novel inductive bias in the weight matrices through the removal of negative eigenvalues, connected to Dirichlet Energy minimization; (2) by extending to GNNs a loss penalty that promotes learned smoothness. Importantly, neither approach negatively impacts performance in noise-free settings, supporting our hypothesis that the source of GNNs robustness is their smoothness inductive bias.
Related papers
- On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning [15.409865070022951]
Graph Neural Networks (GNNs) are models that leverage the graph structure to transmit information between nodes.
We show that a simple state-space formulation of a GNN effectively alleviates over-smoothing and over-squashing at no extra trainable parameter cost.
arXiv Detail & Related papers (2025-02-15T14:43:41Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - A Simple and Yet Fairly Effective Defense for Graph Neural Networks [18.140756786259615]
Graph Neural Networks (GNNs) have emerged as the dominant approach for machine learning on graph-structured data.
Existing defense methods against small adversarial perturbations suffer from high time complexity.
This paper introduces NoisyGNNs, a novel defense method that incorporates noise into the underlying model's architecture.
arXiv Detail & Related papers (2024-02-21T18:16:48Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Bregman Graph Neural Network [27.64062763929748]
In node classification tasks, the smoothing effect induced by GNNs tends to assimilate representations and over-homogenize labels of connected nodes.
We propose a novel bilevel optimization framework for GNNs inspired by the notion of Bregman distance.
arXiv Detail & Related papers (2023-09-12T23:54:24Z) - Revisiting Robustness in Graph Machine Learning [1.5293427903448025]
Many works show that node-level predictions of Graph Neural Networks (GNNs) are unrobust to small, often termed adversarial, changes to the graph structure.
We introduce a more principled notion of an adversarial graph, which is aware of semantic content change.
We find that including the label-structure of the training graph into the inference process of GNNs significantly reduces over-robustness.
arXiv Detail & Related papers (2023-05-01T14:39:55Z) - CAP: Co-Adversarial Perturbation on Weights and Features for Improving
Generalization of Graph Neural Networks [59.692017490560275]
Adversarial training has been widely demonstrated to improve model's robustness against adversarial attacks.
It remains unclear how the adversarial training could improve the generalization abilities of GNNs in the graph analytics problem.
We construct the co-adversarial perturbation (CAP) optimization problem in terms of weights and features, and design the alternating adversarial perturbation algorithm to flatten the weight and feature loss landscapes alternately.
arXiv Detail & Related papers (2021-10-28T02:28:13Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.