論文の概要: MaestroMotif: Skill Design from Artificial Intelligence Feedback
- arxiv url: http://arxiv.org/abs/2412.08542v1
- Date: Wed, 11 Dec 2024 16:59:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 23:20:26.754917
- Title: MaestroMotif: Skill Design from Artificial Intelligence Feedback
- Title(参考訳): MaestroMotif:人工知能のフィードバックによるスキル設計
- Authors: Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang, Pierre-Luc Bacon, Doina Precup, Marlos C. Machado, Pierluca D'Oro,
- Abstract要約: MaestroMotifはAI支援スキルデザインの手法であり、高性能で適応可能なエージェントを生成する。
本稿では,AIを活用したスキルデザイン手法であるMaestroMotifについて述べる。
- 参考スコア(独自算出の注目度): 67.17724089381056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
- Abstract(参考訳): 自然言語でスキルを記述することは、意思決定に関する人間の知識をAIシステムに注入するための、アクセス可能な方法を提供する可能性がある。
本稿では,AIを活用したスキルデザイン手法であるMaestroMotifについて述べる。
MaestroMotifは、Large Language Models(LLM)の機能を活用して、効果的にスキルを作成し、再利用する。
まずLLMのフィードバックを使って、各スキルに対応する報酬を自動的に設計する。
次に、LLMのコード生成能力と強化学習を用いて、スキルをトレーニングし、それらを組み合わせて言語で指定された複雑な振る舞いを実装する。
我々は、NetHack Learning Environment (NLE) の複雑なタスク群を用いてMaestroMotifを評価し、パフォーマンスとユーザビリティの両方において既存のアプローチを上回ることを実証した。
関連論文リスト
- Learning Adaptive Dexterous Grasping from Single Demonstrations [27.806856958659054]
この作業は、2つの重要な課題に対処する。人間による限られたデモンストレーションから、効率的なスキル獲得と、コンテキスト駆動のスキル選択だ。
AdaDexGraspは、スキルごとに1人の人間のデモからスキルを把握できるライブラリを学び、視覚言語モデル(VLM)を使用して最も適切なものを選択する。
我々はAdaDexGraspをシミュレーションと実世界の両方の環境で評価し、RLの効率を大幅に改善し、さまざまなオブジェクト構成をまたいだ人間的な把握戦略の学習を可能にした。
論文 参考訳(メタデータ) (2025-03-26T04:05:50Z) - WisdomBot: Tuning Large Language Models with Artificial Intelligence Knowledge [17.74988145184004]
大規模言語モデル(LLM)は自然言語処理(NLP)の強力なツールとして登場した。
本稿では,LLMの力と教育理論を組み合わせた,WisdomBotという教育用LLMについて述べる。
本稿では,推論中の2つの重要な拡張,すなわち,ローカル知識ベース検索の強化と,推論中の検索エンジン検索の強化を紹介する。
論文 参考訳(メタデータ) (2025-01-22T13:36:46Z) - Dynamic Skill Adaptation for Large Language Models [78.31322532135272]
動的スキル適応(Dynamic Skill Adaptation, DSA)は, 言語モデル(LLM)に新しい複雑なスキルを適応させる適応的かつ動的フレームワークである。
各スキルに対して,学習前スキルの詳細な記述を含む教科書的データと,学習前スキルの具体的活用を目標とした演習的データの両方を生成する。
LLAMA や Mistral のような大規模言語モデルを用いた実験は,提案手法が数学推論スキルや社会学習スキルに適応する上で有効であることを示す。
論文 参考訳(メタデータ) (2024-12-26T22:04:23Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
最近のエンドツーエンド言語モデル(SLM)は、大規模言語モデル(LLM)の機能に拡張されている。
音声とテキストのペアデータを生成するための,シンプルで効果的な自動処理手法を提案する。
本モデルでは,音声教育データを必要としない音声関連タスクの汎用性を示す。
論文 参考訳(メタデータ) (2024-09-30T07:01:21Z) - CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models [19.73329768987112]
CurricuLLMは複雑なロボット制御タスクのためのカリキュラム学習ツールである。
自然言語形式のタスク学習を支援するサブタスクを生成する。
また、サブタスクの自然言語記述を実行可能なコードに変換する。
CurricuLLMは複雑なロボット制御タスクの学習を支援する。
論文 参考訳(メタデータ) (2024-09-27T01:48:16Z) - Agentic Skill Discovery [19.5703917813767]
言語条件付きロボット技術により、Large Language Models (LLMs) の高レベル推論を低レベルロボット制御に適用することができる。
残る課題は、さまざまな基本的なスキルを取得することです。
LLMによって完全に駆動されるスキル発見のための新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-23T19:44:03Z) - Rethinking Mutual Information for Language Conditioned Skill Discovery
on Imitation Learning [36.624923972563415]
我々はLanguage Conditioned Skill Discovery (LCSD)として知られるエンドツーエンドの模倣学習手法を提案する。
ベクトル量子化を利用して離散潜在スキルを学習し、軌跡のスキルシーケンスを活用して高レベルの意味的命令を再構築する。
提案手法は,未確認タスクに対する一般化能力の向上,スキル解釈性の向上,タスク完了の成功率の向上などを示す。
論文 参考訳(メタデータ) (2024-02-27T13:53:52Z) - SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions in Diffusion-Based Task Execution [75.2573501625811]
拡散モデルは、ロボット軌道計画の強力な可能性を示している。
高レベルの命令からコヒーレントな軌道を生成することは依然として困難である。
エンド・ツー・エンドの階層的計画フレームワークであるSkillDiffuserを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:16:52Z) - Instructed Language Models with Retrievers Are Powerful Entity Linkers [87.16283281290053]
Instructed Generative Entity Linker (INSGENEL)は、カジュアル言語モデルが知識ベース上でエンティティリンクを実行することを可能にする最初のアプローチである。
INSGENEL は、+6.8 F1 点が平均的に上昇する以前の生成的代替よりも優れていた。
論文 参考訳(メタデータ) (2023-11-06T16:38:51Z) - PADL: Language-Directed Physics-Based Character Control [66.517142635815]
本稿では,文字が行うべきハイレベルなタスクと低レベルなスキルを指定するために,ユーザが自然言語コマンドを発行できるようにするPADLを提案する。
我々は,シミュレーションされたヒューマノイドキャラクタを効果的に誘導し,多種多様な複雑な運動能力を実現するために,本フレームワークを適用した。
論文 参考訳(メタデータ) (2023-01-31T18:59:22Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z) - LISA: Learning Interpretable Skill Abstractions from Language [85.20587800593293]
言語条件による実演から多種多様な解釈可能なスキルを学習できる階層型模倣学習フレームワークを提案する。
本手法は, 逐次的意思決定問題において, 言語に対するより自然な条件付け方法を示す。
論文 参考訳(メタデータ) (2022-02-28T19:43:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。