Annotation-Efficient Task Guidance for Medical Segment Anything
- URL: http://arxiv.org/abs/2412.08575v1
- Date: Wed, 11 Dec 2024 17:47:00 GMT
- Title: Annotation-Efficient Task Guidance for Medical Segment Anything
- Authors: Tyler Ward, Abdullah-Al-Zubaer Imran,
- Abstract summary: Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions.
Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, which can be an expensive, time-consuming, and error-prone process.
We propose SAM-Mix, a novel multitask learning framework for medical image segmentation.
- Score: 0.31077024712075796
- License:
- Abstract: Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose SAM-Mix, a novel multitask learning framework for medical image segmentation that uses class activation maps produced by an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the SAM framework. Experimental evaluations on the public LiTS dataset confirm the effectiveness of SAM-Mix for simultaneous classification and segmentation of the liver from abdominal computed tomography (CT) scans. When trained for 90% fewer epochs on only 50 labeled 2D slices, representing just 0.04% of the available labeled training data, SAM-Mix achieves a Dice improvement of 5.1% over the best baseline model. The generalization results for SAM-Mix are even more impressive, with the same model configuration yielding a 25.4% Dice improvement on a cross-domain segmentation task. Our code is available at https://github.com/tbwa233/SAM-Mix.
Related papers
- Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
We propose a learnable prompting SAM-induced Knowledge distillation framework (KnowSAM) for semi-supervised medical image segmentation.
Our model outperforms the state-of-the-art semi-supervised segmentation approaches.
arXiv Detail & Related papers (2024-12-18T11:19:23Z) - SAM Carries the Burden: A Semi-Supervised Approach Refining Pseudo Labels for Medical Segmentation [1.342749532731493]
We leverage Segment Anything Model's abstract object understanding for medical image segmentation to provide pseudo labels for semi-supervised learning.
Our approach refines initial segmentations that are derived from a limited amount of annotated data.
Our method outperforms intensity-based post-processing methods.
arXiv Detail & Related papers (2024-11-19T16:06:21Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
The Segment Anything Model (SAM) has emerged as a versatile tool for image segmentation without specific domain training.
Traditional models like nnUNet perform automatic segmentation during inference but need extensive domain-specific training.
We propose nnSAM, integrating SAM's robust feature extraction with nnUNet's automatic configuration to enhance segmentation accuracy on small datasets.
arXiv Detail & Related papers (2023-09-29T04:26:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
However, when applied to medical images, SAM suffers from noticeable performance drop.
In this work, we propose to freeze SAM encoder and finetune a lightweight task-specific prediction head.
arXiv Detail & Related papers (2023-06-23T18:34:30Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
The Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks.
SAM was trained using 11 million images with over 1 billion masks and can produce segmentation results for a wide range of objects in natural scene images.
This paper shows that although SAM does not immediately give high-quality segmentation for medical image data, its generated masks, features, and stability scores are useful for building and training better medical image segmentation models.
arXiv Detail & Related papers (2023-04-22T07:11:53Z) - Jigsaw Clustering for Unsupervised Visual Representation Learning [68.09280490213399]
We propose a new jigsaw clustering pretext task in this paper.
Our method makes use of information from both intra- and inter-images.
It is even comparable to the contrastive learning methods when only half of training batches are used.
arXiv Detail & Related papers (2021-04-01T08:09:26Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.