FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models
- URL: http://arxiv.org/abs/2412.08629v1
- Date: Wed, 11 Dec 2024 18:50:29 GMT
- Title: FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models
- Authors: Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, Tomer Michaeli,
- Abstract summary: editing real images using a pre-trained text-to-image (T2I) diffusion/flow model often involves inverting the image into its corresponding noise map.<n>Here, we introduce FlowEdit, a text-based editing method for pre-trained T2I flow models, which is inversion-free, optimization-free and model agnostic.
- Score: 20.46531356084352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Editing real images using a pre-trained text-to-image (T2I) diffusion/flow model often involves inverting the image into its corresponding noise map. However, inversion by itself is typically insufficient for obtaining satisfactory results, and therefore many methods additionally intervene in the sampling process. Such methods achieve improved results but are not seamlessly transferable between model architectures. Here, we introduce FlowEdit, a text-based editing method for pre-trained T2I flow models, which is inversion-free, optimization-free and model agnostic. Our method constructs an ODE that directly maps between the source and target distributions (corresponding to the source and target text prompts) and achieves a lower transport cost than the inversion approach. This leads to state-of-the-art results, as we illustrate with Stable Diffusion 3 and FLUX. Code and examples are available on the project's webpage.
Related papers
- Generalizable Origin Identification for Text-Guided Image-to-Image Diffusion Models [39.234894330025114]
Text-guided image-to-image diffusion models excel in translating images based on textual prompts.
This motivates us to introduce the task of origin IDentification for text-guided Image-to-image Diffusion models (ID$2$)
A straightforward solution to ID$2$ involves training a specialized deep embedding model to extract and compare features from both query and reference images.
arXiv Detail & Related papers (2025-01-04T20:34:53Z) - Stable Flow: Vital Layers for Training-Free Image Editing [74.52248787189302]
Diffusion models have revolutionized the field of content synthesis and editing.
Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT)
We propose an automatic method to identify "vital layers" within DiT, crucial for image formation.
Next, to enable real-image editing, we introduce an improved image inversion method for flow models.
arXiv Detail & Related papers (2024-11-21T18:59:51Z) - Taming Rectified Flow for Inversion and Editing [57.3742655030493]
Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation.<n>Despite their robust generative capabilities, these models often struggle with inaccuracies.<n>We propose RF-r, a training-free sampler that effectively enhances inversion precision by mitigating the errors in the inversion process of rectified flow.
arXiv Detail & Related papers (2024-11-07T14:29:02Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Semantic Image Inversion and Editing using Rectified Stochastic Differential Equations [41.87051958934507]
This paper addresses two key tasks: (i) inversion and (ii) editing of a real image using rectified flow models (such as Flux)
Our inversion method allows for state-of-the-art performance in zero-shot inversion and editing, outperforming prior works in stroke-to-image synthesis and semantic image editing.
arXiv Detail & Related papers (2024-10-14T17:56:24Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Improving Diffusion-based Image Translation using Asymmetric Gradient
Guidance [51.188396199083336]
We present an approach that guides the reverse process of diffusion sampling by applying asymmetric gradient guidance.
Our model's adaptability allows it to be implemented with both image-fusion and latent-dif models.
Experiments show that our method outperforms various state-of-the-art models in image translation tasks.
arXiv Detail & Related papers (2023-06-07T12:56:56Z) - Eliminating Contextual Prior Bias for Semantic Image Editing via
Dual-Cycle Diffusion [35.95513392917737]
A novel approach called Dual-Cycle Diffusion generates an unbiased mask to guide image editing.
Our experiments demonstrate the effectiveness of the proposed method, as it significantly improves the D-CLIP score from 0.272 to 0.283.
arXiv Detail & Related papers (2023-02-05T14:30:22Z) - Null-text Inversion for Editing Real Images using Guided Diffusion
Models [44.27570654402436]
We introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image.
Our Null-text inversion, based on the publicly available Stable Diffusion model, is extensively evaluated on a variety of images and prompt editing.
arXiv Detail & Related papers (2022-11-17T18:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.