Lectures in Quantum Gravity
- URL: http://arxiv.org/abs/2412.08690v1
- Date: Wed, 11 Dec 2024 19:00:00 GMT
- Title: Lectures in Quantum Gravity
- Authors: Ivano Basile, Luca Buoninfante, Francesco Di Filippo, Benjamin Knorr, Alessia Platania, Anna Tokareva,
- Abstract summary: This collection of lecture notes encompasses a selection of topics that were covered in six mini-courses at the Nordita PhD school "Towards Quantum Gravity"
The scope was to provide a coherent picture, from its foundation to forefront research, emphasizing connections between different areas.
- Score: 0.0
- License:
- Abstract: Formulating a quantum theory of gravity lies at the heart of fundamental theoretical physics. This collection of lecture notes encompasses a selection of topics that were covered in six mini-courses at the Nordita PhD school "Towards Quantum Gravity". The scope was to provide a coherent picture, from its foundation to forefront research, emphasizing connections between different areas. The lectures begin with perturbative quantum gravity and effective field theory. Subsequently, two ultraviolet-complete approaches are presented: asymptotically safe gravity and string theory. Finally, elements of quantum effects in black hole spacetimes are discussed.
Related papers
- Visions in Quantum Gravity [23.385204891302543]
Nordita Program "Quantum Gravity: from gravitational effective field theories to ultraviolet complete approaches"
This contribution summarizes the twelve topical discussions held during the program.
arXiv Detail & Related papers (2024-12-11T19:00:00Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Quantum-information methods for quantum gravity laboratory-based tests [0.0]
We review the nascent field of information-theoretic methods applied to designing tests of quantum gravity in the laboratory.
We shall focus mainly on the detection of gravitational entanglement between two quantum probes, comparing this method with single-probe schemes.
We shall also highlight the role of general information-theoretic principles in illuminating the search for quantum effects in gravity.
arXiv Detail & Related papers (2024-10-08T19:51:10Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Graviton physics: Quantum field theory of gravitons, graviton noise and gravitational decoherence -- a concise tutorial [0.0]
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave astronomy capable of probing into the strong field dynamics of black holes and neutron stars.
To fully appreciate these exciting developments requires a working knowledge in classical GR, QF theory and QI.
This tutorial attempts to provide the necessary connections between them.
arXiv Detail & Related papers (2024-05-20T05:16:12Z) - Entanglement Dynamics in Quantum Continuous-Variable States [2.480301925841752]
Gravitation between two quantum masses is one of the most straightforward scenarios where quantum features of gravity could be observed.
This thesis introduces general tools to tackle interaction-mediated entanglement and applies them to two particles prepared in continuous-variable states.
arXiv Detail & Related papers (2024-05-12T19:21:21Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Relativistic Particle Motion and Quantum Optics in a Weak Gravitational
Field [0.0]
Long-baseline quantum experiments in space make it necessary to better understand the time evolution of relativistic quantum particles in a weakly varying gravitational field.
We explain why conventional treatments by traditional quantum optics and atomic physics may become inadequate when faced with issues related to locality, simultaneity, signaling, causality, etc.
Adding the effects of gravitation, we are led to Quantum Field Theory in Curved Spacetime (QFTCST)
This well-established theory should serve as the canonical reference theory to a large class of proposed space experiments testing the foundations of gravitation and quantum theory.
arXiv Detail & Related papers (2021-06-23T16:32:45Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.