Can Schroedingerist Wavefunction Physics Explain Brownian Motion? III: A One-Dimensional Heavy and Light Particles Model Exhibiting Brownian-Motion-Like Trajectories and Diffusion
- URL: http://arxiv.org/abs/2412.08764v3
- Date: Wed, 25 Dec 2024 13:52:06 GMT
- Title: Can Schroedingerist Wavefunction Physics Explain Brownian Motion? III: A One-Dimensional Heavy and Light Particles Model Exhibiting Brownian-Motion-Like Trajectories and Diffusion
- Authors: Leonardo De Carlo, W. David Wick,
- Abstract summary: We introduce a one-space-dimensional perturbation model which, granted a finite series, fulfills the criteria for BML trajectories and diffusion.
We note that Planck's constant makes an appearance in the diffusion coefficient, which further differentiates the present theory from the work of Poincare and Einstein in the previous century.
- Score: 0.0
- License:
- Abstract: In two prior papers of this series, it was proposed that a wavefunction model of a heavy particle and a collection of light particles might generate ``Brownian-Motion-Like" trajectories as well as diffusive motion (displacement proportional to the square-root of time) of the heavy particle, but did not exhibit a concrete instance. Here we introduce a one-space-dimensional model which, granted a finite perturbation series, fulfills the criteria for BML trajectories and diffusion. We note that Planck's constant makes an appearance in the diffusion coefficient, which further differentiates the present theory from the work of Poincare and Einstein in the previous century.
Related papers
- Spin resolved momentum spectra for vacuum pair production via a generalized two level model [17.44597560204009]
We have formulated a generalized two level model for studying the pair production in multidimensional time-dependent electric fields.
It can provide momentum spectra with fully spin resolved components for all possible combined spin states of the particle and anti-particle simultaneously.
It is believed that by this two level model one can extend researches on pair production for more different background fields.
arXiv Detail & Related papers (2024-09-18T09:33:40Z) - Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.
We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - Brownian Particles and Matter Waves [0.0]
We examine whether Brownian particles can manifest a particle-wave duality without employing a priori arguments from quantum decoherence.
Our one-dimensional calculations show that for this to happen, the trapping needs to be very strong so that a Brownian nanoparticles needs to be embedded in an extremely stiff solid.
arXiv Detail & Related papers (2024-04-02T15:01:14Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Diffusive modes of two-band fermions under number-conserving dissipative
dynamics [0.0]
Driven-dissipative protocols are proposed to control and create nontrivial quantum many-body correlated states.
We show the existence of diffusive modes in the particle-number-conserving dissipative dynamics.
arXiv Detail & Related papers (2023-08-12T12:52:56Z) - Can Schrodingerist Wavefunction Physics Explain Brownian Motion? II. The
Diffusion Coefficient [0.0]
In the first paper of this series, I investigated whether a wavefunction model of a heavy particle and a collection of light particles might generate "Brownian-Motion-Like" trajectories.
I concluded that it was possible, but left unsettled the second claim in Einstein's classical program: diffusive motion.
In this paper, I derive a criterion for diffusive motion, as well as an expression for the diffusion coefficient.
arXiv Detail & Related papers (2023-08-02T21:20:02Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Can Schroedingerist Wavefunction Physics Explain Brownian Motion? [0.0]
Einstein's 1905 analysis of the Brownian Motion of a pollen grain in a water droplet provided one of the most convincing demonstrations of the reality of atoms.
In 1926 Schroedinger replaced classical particles by wavefunctions, which cannot undergo collisions.
Can a Schroedingerist wavefunction physics account for Perrin's observations?
arXiv Detail & Related papers (2023-05-19T19:50:00Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - L\'evy Models for Collapse of the Wave Function [0.0]
This paper considers energy-based extensions of the Schr"odinger equation.
The properties of such models are different from those of Brownian reduction models.
arXiv Detail & Related papers (2022-07-25T14:45:29Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.