Spin resolved momentum spectra for vacuum pair production via a generalized two level model
- URL: http://arxiv.org/abs/2409.11833v1
- Date: Wed, 18 Sep 2024 09:33:40 GMT
- Title: Spin resolved momentum spectra for vacuum pair production via a generalized two level model
- Authors: Orkash Amat, Hong-Hao Fan, Suo Tang, Yong-Feng Huang, Bai-Song Xie,
- Abstract summary: We have formulated a generalized two level model for studying the pair production in multidimensional time-dependent electric fields.
It can provide momentum spectra with fully spin resolved components for all possible combined spin states of the particle and anti-particle simultaneously.
It is believed that by this two level model one can extend researches on pair production for more different background fields.
- Score: 17.44597560204009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have formulated a generalized two level model for studying the pair production in multidimensional time-dependent electric fields. It can provide momentum spectra with fully spin resolved components for all possible combined spin states of the particle and anti-particle simultaneously. Moreover, we have also investigated the validity of the two level model for fermions (scalar particles) by comparing the results with those by equal-time Dirac-Heisenberg-Wigner (Feshbach-Villars-Heisenberg-Wigner) formalism in different regimes of pair creation, i.e., multiphoton and tunneling dominated mechanisms. It is found that the results are consistent with each other, indicating the good approximation of the two level model. In particular, in terms of the two level model, we found that the contribution of the particle momentum spectra is the greatest when the spin states of the particle and anti-particle are parallel with $S=1$. It is believed that by this two level model one can extend researches on pair production for more different background fields, such as a slowly varying spatial-temporal one. Many other interesting phenomena may also be revealed, including the spin-resolved vortex structure that is contained in the phase feature of the distribution function of the created pairs.
Related papers
- Longitudinal Momentum Spectra of pair created in a pulsed field at finite times: Are Oscillations "Real" [0.0]
We analytically compute the probability of $(e+ e-) $pair production in momentum space.
We compare the result with quantum kinetic theory (QKT)
Both approaches allow us to study the particle momentum spectrum at any instant in time.
arXiv Detail & Related papers (2024-05-05T14:28:05Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Two-particle topological Thouless spin pump [0.0]
We show that two particles interacting via spin exchange exhibit topological features found in one-dimensional single particle lattice models.
By using the spin states as a synthetic spatial dimension, we show two particles are enough to simulate well known topological properties in condensed matter physics.
arXiv Detail & Related papers (2022-11-07T07:00:29Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.