論文の概要: jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
- arxiv url: http://arxiv.org/abs/2412.08802v2
- Date: Thu, 24 Apr 2025 16:22:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-26 01:33:38.45603
- Title: jina-clip-v2: Multilingual Multimodal Embeddings for Text and Images
- Title(参考訳): jina-clip-v2: テキストと画像のための多言語マルチモーダル埋め込み
- Authors: Andreas Koukounas, Georgios Mastrapas, Sedigheh Eslami, Bo Wang, Mohammad Kalim Akram, Michael Günther, Isabelle Mohr, Saba Sturua, Nan Wang, Han Xiao,
- Abstract要約: jina-clip-v2は、テキストペア、三つ子、画像-テキストペアで訓練された対照的な視覚言語モデルである。
我々は、多言語テキストエンコーダを使用し、29の非英語言語からの多言語テキストを含む訓練データセットを拡張した。
我々は、このモデルの性能を評価し、jina-clip-v2が最先端のCLIPモデルよりも顕著に改善されていることを示す。
- 参考スコア(独自算出の注目度): 5.753626355995653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Contrastive Language-Image Pretraining (CLIP) has been widely used for crossmodal information retrieval and multimodal understanding tasks. However, CLIP models are mainly optimized for crossmodal vision-language tasks and underperform in single-mode text tasks. Moreover, these models are often trained on English datasets and therefore lack multilingual understanding. Additionally, from a visual understanding perspective, previous CLIP-based models exhibit insufficient understanding of visually rich documents. In this work, we propose jina-clip-v2, a contrastive vision-language model trained on text pairs, triplets and image-text pairs via a multi-task and multi-stage contrastive learning paradigm in order to support both text-only and crossmodal tasks. We employ a multilingual text encoder and expand the training dataset to include multilingual texts from 29 non-English languages, including Hindi, Chinese, German, French, and others, as well as images of visually rich documents. We evaluate the model's performance and show that jina-clip-v2 achieves notable improvements over state-of-the-art CLIP-based models in zero-shot text-only retrieval, semantic textual similarity, and crossmodal retrieval tasks in both English and multilingual settings. jina-clip-v2 also provides for flexibility in embedding dimensionality, enabling users to select the granularity of the representations. jina-clip-v2 is publicly available at https://huggingface.co/jinaai/jina-clip-v2.
- Abstract(参考訳): Contrastive Language-Image Pretraining (CLIP) は、クロスモーダル情報検索やマルチモーダル理解タスクに広く利用されている。
しかし、CLIPモデルは、主にクロスモーダルな視覚言語タスクに最適化され、シングルモードのテキストタスクでは性能が劣る。
さらに、これらのモデルは英語のデータセットに基づいて訓練されることが多く、多言語理解が欠如している。
さらに、視覚的理解の観点からは、従来のCLIPベースのモデルでは、視覚的にリッチなドキュメントの理解が不十分であった。
本研究では,テキストのみのタスクとクロスモーダルタスクの両方をサポートするために,マルチタスクおよびマルチステージのコントラスト学習パラダイムを用いて,テキストペア,トリップレット,イメージテキストペアを訓練したコントラッシブ視覚言語モデルであるjina-clip-v2を提案する。
我々は、多言語テキストエンコーダを使用し、トレーニングデータセットを拡張し、ヒンディー語、中国語、ドイツ語、フランス語を含む29の非英語言語からの多言語テキストと、視覚的に豊かな文書の画像を含む。
我々は、このモデルの性能を評価し、ゼロショットテキストのみの検索、セマンティックテキストの類似性、および英語と多言語の両方の設定におけるクロスモーダル検索タスクにおいて、jina-clip-v2が最先端のCLIPベースのモデルよりも顕著に改善されていることを示す。
jina-clip-v2はまた、ディメンタリティを埋め込む際の柔軟性を提供し、ユーザーは表現の粒度を選択できる。
jina-clip-v2はhttps://huggingface.co/jinaai/jina-clip-v2で公開されている。
関連論文リスト
- ABC: Achieving Better Control of Multimodal Embeddings using VLMs [61.396457715710774]
ビジュアル埋め込みモデルは、ビジュアル検索や分類のようなゼロショットタスクで優れている。
既存のCLIPベースのアプローチでは、イメージとテキストを独立して埋め込み、結果を融合する。
本稿では,視覚言語モデルバックボーンを用いたオープンソースのマルチモーダル埋め込みモデルABCを紹介する。
論文 参考訳(メタデータ) (2025-03-01T03:29:02Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopardは、複数のテキストリッチイメージを含む視覚言語タスクを扱うビジョン言語モデルである。
まず、テキストリッチでマルチイメージのシナリオに合わせて、約100万の高品質なマルチモーダル命令チューニングデータをキュレートした。
第2に,視覚列長の割り当てを動的に最適化する適応型高解像度マルチイメージ符号化モジュールを開発した。
論文 参考訳(メタデータ) (2024-10-02T16:55:01Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval [10.603148564713518]
汎用マルチモーダル検索のための新しい埋め込みモデルVISTAを提案する。
画像理解機能を備えた強力なテキストエンコーダを拡張するフレキシブルアーキテクチャを導入する。
第2に,埋め込みモデルのトレーニングを容易にするために,高品質な合成画像テキストを提供する2つのデータ生成戦略を開発する。
論文 参考訳(メタデータ) (2024-06-06T17:37:47Z) - Jina CLIP: Your CLIP Model Is Also Your Text Retriever [5.110454439882224]
Contrastive Language-Image Pretraining (CLIP) は、一般的な埋め込み空間における画像とテキストを固定サイズのベクトルにマッピングすることで、モデルをトレーニングするために広く使われている。
本稿では,この問題に対処する新しいマルチタスクコントラストトレーニング手法を提案し,テキスト画像とテキストテキスト検索の両タスクにおける最先端性能を実現するために,jina-clip-v1モデルをトレーニングするために使用する。
論文 参考訳(メタデータ) (2024-05-30T16:07:54Z) - Ziya-Visual: Bilingual Large Vision-Language Model via Multi-Task
Instruction Tuning [27.544311403607786]
バイリンガルな大規模視覚言語モデル(LVLM)の集合であるZiya-Visualシリーズを紹介する。
我々のモデルは BLIP-2 から Querying Transformer を採用し,最適化手法のさらなる支援を探求している。
さらに,多モーダルシナリオにおけるGPT-4の理解能力を刺激し,収集した英語画像テキストデータセットを中国語に翻訳する。
論文 参考訳(メタデータ) (2023-10-12T09:39:17Z) - PaLI-X: On Scaling up a Multilingual Vision and Language Model [166.9837904115951]
マルチ言語ビジョンと言語モデルであるPaLI-Xをスケールアップする際のトレーニングレシピと結果を示す。
我々のモデルは、多種多様な複雑なタスクにおいて、新しいレベルのパフォーマンスを達成する。
複雑なカウントや多言語オブジェクト検出といった,トレーニングミックスに明示的に含まれないタスクの出現を観察する。
論文 参考訳(メタデータ) (2023-05-29T18:58:38Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - FaD-VLP: Fashion Vision-and-Language Pre-training towards Unified
Retrieval and Captioning [66.38951790650887]
ファッション分野におけるマルチモーダルタスクは、eコマースにとって大きな可能性を秘めている。
本稿では,ファッションとテクストのペアから構築した弱教師付き三つ組に基づく,ファッション特有の事前学習フレームワークを提案する。
3重項に基づくタスクは、標準的なマルチモーダル事前学習タスクに有効な追加であることを示す。
論文 参考訳(メタデータ) (2022-10-26T21:01:19Z) - MuMUR : Multilingual Multimodal Universal Retrieval [19.242056928318913]
マルチ言語モデルからの知識伝達を利用して,マルチモーダル(画像とビデオ)検索の性能を向上させるフレームワーク MuMUR を提案する。
まず、最先端の機械翻訳モデルを用いて、擬似基底構造多言語視覚テキストペアを構築する。
次に、このデータを用いて、英語と非英語のテキストクエリが共通の埋め込み空間で表現される共同視覚テキスト表現を学習する。
論文 参考訳(メタデータ) (2022-08-24T13:55:15Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Visual Grounding Strategies for Text-Only Natural Language Processing [1.2183405753834562]
BERTのマルチモーダル拡張は、視覚的質問回答などのマルチモーダルタスクに最先端の結果をもたらすテキストと画像の共同モデリングを可能にします。
本稿では,マルチモーダル事前学習がテキスト処理精度を向上させる基礎となることを期待して,純粋にテキストタスクにマルチモーダルモデリングを利用する。
転送グラウンドと呼ばれる最初のタイプの戦略は、テキストのみのタスクにマルチモーダルモデルを適用し、プレースホルダーを使って画像入力を置き換える。
2つ目は「連想的接地」と呼ばれ、画像検索を利用してテキストと関連画像のマッチングを行う。
論文 参考訳(メタデータ) (2021-03-25T16:03:00Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
本稿では,言語間言語モデルの事前学習を定式化する情報理論フレームワークを提案する。
コントラスト学習に基づく新しい事前学習課題を提案する。
単言語コーパスと並列コーパスの両方を活用することで、事前訓練されたモデルの言語間変換性を向上させるために、プレテキストを共同で訓練する。
論文 参考訳(メタデータ) (2020-07-15T16:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。