論文の概要: A Mathematical Structure for Amplitude-Mixing Error-Transparent Gates for Binomial Codes
- arxiv url: http://arxiv.org/abs/2412.08870v1
- Date: Thu, 12 Dec 2024 02:06:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:58.975013
- Title: A Mathematical Structure for Amplitude-Mixing Error-Transparent Gates for Binomial Codes
- Title(参考訳): 二項符号に対する振幅混合誤差透過ゲートの数学的構造
- Authors: Owen C. Wetherbee, Saswata Roy, Baptiste Royer, Valla Fatemi,
- Abstract要約: エラー透明な操作は、操作中のエラー率を保存する方法のひとつです。
相ゲートのみが、二項符号化の明示的にエラー透過的な定式化を施されている。
修正可能な光子ジャンプのすべてに対する誤差透過性を示すが、ジャンプの誤りではない。
- 参考スコア(独自算出の注目度): 0.562479170374811
- License:
- Abstract: Bosonic encodings of quantum information offer hardware-efficient, noise-biased approaches to quantum error correction relative to qubit register encodings. Implementations have focused in particular on error correction of stored, idle quantum information, whereas quantum algorithms are likely to desire high duty cycles of active control. Error-transparent operations are one way to preserve error rates during operations, but, to the best of our knowledge, only phase gates have so far been given an explicitly error-transparent formulation for binomial encodings. Here, we introduce the concept of 'parity nested' operations, and show how these operations can be designed to achieve continuous amplitude-mixing logical gates for binomial encodings that are fully error-transparent to the photon loss channel. For a binomial encoding that protects against l photon losses, the construction requires $\lfloor$l/2$\rfloor$ + 1 orders of generalized squeezing in the parity nested operation to fully preserve this protection. We further show that error-transparency to all the correctable photon jumps, but not the no-jump errors, can be achieved with just a single order of squeezing. Finally, we comment on possible approaches to experimental realization of this concept.
- Abstract(参考訳): 量子情報のボソニックエンコーディングは、量子ビットレジスタエンコーディングに対して、ハードウェア効率のよいノイズバイアス付きアプローチを提供する。
実装では特に、格納されたアイドル量子情報の誤り訂正に重点を置いているが、量子アルゴリズムはアクティブ制御のハイデューティサイクルを望んでいる可能性が高い。
誤り透明な操作は操作中のエラー率を保存する方法の1つであるが、我々の知る限り、相ゲートのみが二項符号化に対して明示的にエラー透過的な定式化を施されている。
本稿では「パリティネスト」演算の概念を導入し、光子損失チャネルに完全に透過的な二項符号化のための連続振幅混合論理ゲートを実現するために、これらの演算をどのように設計するかを示す。
l光子損失から保護する二項符号化では、この保護を完全に保存するためには$\lfloor$l/2$\rfloor$ + 1の一般スキーズ演算をパリティネスト操作で行う必要がある。
さらに、修正可能な光子ジャンプのすべてに対する誤差透過性は、ただ1つの順序で達成できることも示している。
最後に、この概念を実験的に実現するための潜在的アプローチについて述べる。
関連論文リスト
- Space-Efficient Quantum Error Reduction without log Factors [50.10645865330582]
本稿では,多数決のランダムウォーク解釈に類似したライン上の重み付けウォークとして理解可能な,新たに単純化された浄化器の構成を提案する。
我々の浄化器は、前者よりも指数関数的に空間の複雑さが良く、精製されるアルゴリズムの音質-完全性ギャップに四分法的に依存している。
論文 参考訳(メタデータ) (2025-02-13T12:04:39Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
ボソニック量子誤り訂正符号は、主に単一光子損失を防ぐために設計されている。
エラー修正には、エラー状態 -- 逆のパリティを持つ -- をコード状態にマッピングするリカバリ操作が必要です。
ここでは、ボソニックモード上での光子数選択同時光子加算演算のコレクションを実現する。
論文 参考訳(メタデータ) (2022-12-22T23:32:21Z) - Dual-rail encoding with superconducting cavities [2.003418126964701]
2つの超伝導マイクロ波キャビティの単一光子部分空間に、我々の物理量子ビットを符号化する回路量子電気力学(QED)デュアルレール量子ビットを導入する。
本稿では, 状態準備, 論理的読み出し, パラメトリゾブル単一および2量子ゲートを含む, ゲートベースのユニバーサル操作の実施方法について述べる。
論文 参考訳(メタデータ) (2022-12-22T23:21:39Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Construction of Bias-preserving Operations for Pair-cat Code [17.34207569961146]
マルチレベルシステムは、バイアス保存量子演算の望ましいセットを達成することができる。
猫符号は、励起損失誤差に対する連続量子誤差補正とは互換性がない。
バイアス保存処理をペアカット符号に一般化し、ボゾン損失とデフォーカスエラーの両方に対して連続量子誤り補正に適合させる。
論文 参考訳(メタデータ) (2022-08-14T20:45:26Z) - Fundamental limits of quantum error mitigation [0.0]
本稿では, サンプリングオーバーヘッドの関数として, 誤差軽減アルゴリズムが計算誤差を低減する方法を示す。
この結果から、与えられた量子誤り軽減戦略が最適であり、改善の余地があるかどうかを識別する手段が提供される。
論文 参考訳(メタデータ) (2021-09-09T17:56:14Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
実効論理ノイズに対する再正規化として,読み出し量子ビット上の測定誤差が現れることを示す。
実効的論理ノイズの計算複雑性を,数桁のオーダーで低減する一般手法を導出する。
論文 参考訳(メタデータ) (2020-03-23T19:40:56Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。