論文の概要: Residual Channel Boosts Contrastive Learning for Radio Frequency Fingerprint Identification
- arxiv url: http://arxiv.org/abs/2412.08885v1
- Date: Thu, 12 Dec 2024 02:48:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:33.180495
- Title: Residual Channel Boosts Contrastive Learning for Radio Frequency Fingerprint Identification
- Title(参考訳): 残留チャネルは無線周波数フィンガープリント同定のためのコントラスト学習を促進する
- Authors: Rui Pan, Hui Chen, Guanxiong Shen, Hongyang Chen,
- Abstract要約: 本稿では、RFFI(Radio Frequency Fingerprint Identification)のための残留チャネルに基づくデータ拡張戦略を提案する。
提案手法は,より少ないサンプルと少ない時間で,特徴抽出能力と一般化能力の両方を著しく向上させることを示す。
- 参考スコア(独自算出の注目度): 17.98760668117099
- License:
- Abstract: In order to address the issue of limited data samples for the deployment of pre-trained models in unseen environments, this paper proposes a residual channel-based data augmentation strategy for Radio Frequency Fingerprint Identification (RFFI), coupled with a lightweight SimSiam contrastive learning framework. By applying least square (LS) and minimum mean square error (MMSE) channel estimations followed by equalization, signals with different residual channel effects are generated. These residual channels enable the model to learn more effective representations. Then the pre-trained model is fine-tuned with 1% samples in a novel environment for RFFI. Experimental results demonstrate that our method significantly enhances both feature extraction ability and generalization while requiring fewer samples and less time, making it suitable for practical wireless security applications.
- Abstract(参考訳): 本稿では、未確認環境における事前学習モデルの展開のための限られたデータサンプルの問題に対処するため、RFFI(Radio Frequency Fingerprint Identification)のための残留チャネルに基づくデータ拡張戦略と、軽量なSimSiamコントラスト学習フレームワークを提案する。
最小二乗(LS)と最小平均二乗誤差(MMSE)のチャネル推定に等化を加えて、異なる残留チャネル効果の信号を生成する。
これらの残留チャネルにより、モデルはより効果的な表現を学ぶことができる。
そして、RFFIのための新しい環境において、事前学習されたモデルを1%のサンプルで微調整する。
実験により,本手法は,より少ないサンプルと少ない時間で特徴抽出能力と一般化性を向上し,実用的な無線セキュリティアプリケーションに適していることが示された。
関連論文リスト
- Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
生成のための大規模拡散モデルの訓練における主要なボトルネックは、これらの表現を効果的に学習することにある。
本稿では,RePresentation Alignment (REPA) と呼ばれる単純な正規化を導入し,ノイズの多い入力隠れ状態の投影を,外部の事前学習された視覚エンコーダから得られるクリーンな画像表現と整合させる手法を提案する。
我々の単純な戦略は、一般的な拡散やDiTsやSiTsといったフローベースのトランスフォーマーに適用した場合、トレーニング効率と生成品質の両方に大きな改善をもたらす。
論文 参考訳(メタデータ) (2024-10-09T14:34:53Z) - Generating High Dimensional User-Specific Wireless Channels using Diffusion Models [28.270917362301972]
本稿では拡散モデルを用いて合成無線チャネルデータを生成する新しい手法を提案する。
我々は、ユーザ位置を条件入力として合成された高忠実度チャネルサンプルを生成し、測定不足を克服するために、より大きな拡張データセットを作成する。
論文 参考訳(メタデータ) (2024-09-05T22:08:28Z) - A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems [35.07773969966621]
無線通信におけるチャネル推定と信号検出のための有望なアプローチとして,Deep Learning (DL) が登場している。
無線チャネルの動的性質に対処するためには、新しい非老化データに基づいてDL手法を再訓練する必要がある。
本稿では,モデルを再学習することなく,様々な無線環境において高い検出性能を達成できる,新しいユニバーサルディープニューラルネットワーク(Uni-DNN)を提案する。
論文 参考訳(メタデータ) (2024-04-03T11:21:10Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - Generative Diffusion Models for Radio Wireless Channel Modelling and
Sampling [11.09458914721516]
チャネルモデリングの複雑さと高品質な無線チャネルデータの収集コストが大きな課題となっている。
本稿では,拡散モデルに基づくチャネルサンプリング手法を提案する。
モード崩壊や不安定なトレーニングに苦しむ既存のGANベースのアプローチと比較して,拡散型アプローチは多種多様な高忠実度サンプルを合成し,生成することを示した。
論文 参考訳(メタデータ) (2023-08-10T13:49:26Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
拡散モデルを用いた重畳音源の分離手法を提案する。
高周波(RF)システムへの応用によって、我々は、基礎となる離散的な性質を持つ情報源に興味を持っている。
提案手法は,最近提案されたスコア蒸留サンプリング方式のマルチソース拡張と見なすことができる。
論文 参考訳(メタデータ) (2023-06-26T04:12:40Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - Self-Supervised RF Signal Representation Learning for NextG Signal
Classification with Deep Learning [5.624291722263331]
自己教師付き学習は、無線周波数(RF)信号自体から有用な表現を学習することを可能にする。
自己教師型学習による信号表現の学習により,AMRのサンプル効率(精度向上に必要なラベル付きサンプル数)を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-07-07T02:07:03Z) - Jo-SRC: A Contrastive Approach for Combating Noisy Labels [58.867237220886885]
Jo-SRC (Joint Sample Selection and Model Regularization based on Consistency) というノイズロバスト手法を提案する。
具体的には、対照的な学習方法でネットワークをトレーニングする。
各サンプルの2つの異なるビューからの予測は、クリーンまたは分布不足の「可能性」を推定するために使用されます。
論文 参考訳(メタデータ) (2021-03-24T07:26:07Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
本稿では,Web画像を用いた深部FGモデルのトレーニングにおいて,ラベルノイズに対処するための再利用可能なサンプル選択と修正手法を提案する。
私たちのキーとなるアイデアは、再利用可能なサンプルの追加と修正を行い、それらをクリーンな例とともに活用してネットワークを更新することです。
論文 参考訳(メタデータ) (2020-08-06T02:07:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。