論文の概要: A Flexible Plug-and-Play Module for Generating Variable-Length
- arxiv url: http://arxiv.org/abs/2412.08922v1
- Date: Thu, 12 Dec 2024 04:13:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:55.824044
- Title: A Flexible Plug-and-Play Module for Generating Variable-Length
- Title(参考訳): 可変長生成のためのフレキシブルプラグアンドプレイモジュール
- Authors: Liyang He, Yuren Zhang, Rui Li, Zhenya Huang, Runze Wu, Enhong Chen,
- Abstract要約: Nested Hash Layer (NHL) は、既存の深い教師付きハッシュモデル用に設計されたプラグイン・アンド・プレイモジュールである。
NHLは、異なる長さのハッシュコードをネストした方法で同時に生成する。
NHLは、様々な深層ハッシュモデルに対して優れた検索性能を達成する。
- 参考スコア(独自算出の注目度): 61.095479786194836
- License:
- Abstract: Deep supervised hashing has become a pivotal technique in large-scale image retrieval, offering significant benefits in terms of storage and search efficiency. However, existing deep supervised hashing models predominantly focus on generating fixed-length hash codes. This approach fails to address the inherent trade-off between efficiency and effectiveness when using hash codes of varying lengths. To determine the optimal hash code length for a specific task, multiple models must be trained for different lengths, leading to increased training time and computational overhead. Furthermore, the current paradigm overlooks the potential relationships between hash codes of different lengths, limiting the overall effectiveness of the models. To address these challenges, we propose the Nested Hash Layer (NHL), a plug-and-play module designed for existing deep supervised hashing models. The NHL framework introduces a novel mechanism to simultaneously generate hash codes of varying lengths in a nested manner. To tackle the optimization conflicts arising from the multiple learning objectives associated with different code lengths, we further propose an adaptive weights strategy that dynamically monitors and adjusts gradients during training. Additionally, recognizing that the structural information in longer hash codes can provide valuable guidance for shorter hash codes, we develop a long-short cascade self-distillation method within the NHL to enhance the overall quality of the generated hash codes. Extensive experiments demonstrate that NHL not only accelerates the training process but also achieves superior retrieval performance across various deep hashing models. Our code is publicly available at https://github.com/hly1998/NHL.
- Abstract(参考訳): 深い教師付きハッシュは、大規模な画像検索において重要な技術となり、ストレージと検索効率の面で大きなメリットをもたらしている。
しかし、既存の深い教師付きハッシュモデルは、主に固定長のハッシュコードを生成することに重点を置いている。
このアプローチは、長さの異なるハッシュコードを使用する場合、効率性と有効性の間の本質的にのトレードオフに対処できない。
特定のタスクに対して最適なハッシュコード長を決定するには、複数のモデルを異なる長さでトレーニングする必要があるため、トレーニング時間と計算オーバーヘッドが増加する。
さらに、現在のパラダイムは、異なる長さのハッシュコード間の潜在的な関係を見落とし、モデルの全体的な有効性を制限する。
これらの課題に対処するために,既存の深層型ハッシュモデル用に設計されたプラグアンドプレイモジュールであるNested Hash Layer (NHL)を提案する。
NHLフレームワークは、ネストされた方法で様々な長さのハッシュコードを同時に生成する新しいメカニズムを導入している。
コード長の異なる複数の学習目標から生じる最適化競合に対処するため,トレーニング中の勾配を動的に監視・調整する適応重み付け戦略を提案する。
さらに,より長いハッシュ符号の構造情報は,より短いハッシュ符号に対して貴重なガイダンスを与えることができることを認識して,NHL内の長短カスケード自己蒸留法を開発し,生成したハッシュ符号の全体的な品質を向上させる。
広範囲な実験により,NHLはトレーニングプロセスを加速するだけでなく,様々な深層ハッシュモデルに対して優れた検索性能が得られることが示された。
私たちのコードはhttps://github.com/hly1998/NHL.comで公開されています。
関連論文リスト
- SECRET: Towards Scalable and Efficient Code Retrieval via Segmented Deep Hashing [83.35231185111464]
ディープラーニングは、検索パラダイムを語彙ベースのマッチングから、ソースコードとクエリをベクトル表現にエンコードした。
従来の研究では、クエリやコードスニペットのハッシュコードを生成し、ハミング距離を使ってコード候補を高速にリコールするディープハッシュベースの手法が提案されている。
提案手法は,既存の深層ハッシュ法によって計算された長いハッシュコードを,反復的学習戦略により複数の短いハッシュコードセグメントに変換する手法である。
論文 参考訳(メタデータ) (2024-12-16T12:51:35Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
本稿では,ハッシュ符号間のクラス間の差分性とクラス内圧縮性が,ハッシュ符号の性能の低い境界を決定することを証明する。
次に、ハッシュコードの後部を推定し、それを制御することにより、上記の目的を完全に活用する代理モデルを提案し、低バイアス最適化を実現する。
一連のハッシュモデルをテストすることで、平均精度が最大で26.5%、精度が最大で20.5%向上した。
論文 参考訳(メタデータ) (2022-10-12T03:30:56Z) - One Loss for All: Deep Hashing with a Single Cosine Similarity based
Learning Objective [86.48094395282546]
ディープハッシュモデルは通常、学習されたバイナリハッシュコードの識別と量子化エラーの最小化という2つの学習目標を持つ。
本稿では,1つの学習目的しか持たない新しい深層ハッシュモデルを提案する。
我々のモデルは,3つの大規模インスタンス検索ベンチマークにおいて,最先端のマルチロスハッシュモデルより優れている。
論文 参考訳(メタデータ) (2021-09-29T14:27:51Z) - MOON: Multi-Hash Codes Joint Learning for Cross-Media Retrieval [30.77157852327981]
クロスメディアハッシュ技術は高い計算効率と低ストレージコストで注目を集めている。
クロスメディア検索のための新しいMultiple hash cOdes jOint learNing法(MOON)を開発した。
論文 参考訳(メタデータ) (2021-08-17T14:47:47Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
マルチインデックスハッシュに最適化することで,効率的かつ高効率なハッシュコードを学習する教師なしハッシュモデルを提案する。
文書類似度検索のタスクにおいて、MISHと最先端のセマンティックハッシュベースラインを実験的に比較する。
マルチインデックスハッシュは、線形スキャンと比較してベースラインの効率も向上しますが、MISHよりも33%遅くなっています。
論文 参考訳(メタデータ) (2021-03-26T13:33:48Z) - Fast Class-wise Updating for Online Hashing [196.14748396106955]
本稿では,FCOH(Fast Class-wise Updating for Online Hashing)と呼ばれる新しいオンラインハッシュ方式を提案する。
クラスワイズ更新法は、バイナリコード学習を分解し、代わりにクラスワイズ方式でハッシュ関数を更新する。
オンラインの効率をより高めるために,異なるバイナリ制約を独立に扱うことで,オンライントレーニングを高速化する半緩和最適化を提案する。
論文 参考訳(メタデータ) (2020-12-01T07:41:54Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
競合するオートエンコーダは、バランスよく高品質なハッシュコードを生成する堅牢で局所性を保存するハッシュ関数を暗黙的に学習できることが示されている。
既存の逆ハッシュ法は、大規模な画像検索に非効率である。
本稿では,サンプル要求と計算コストを大幅に低減した,新しい対向型オートエンコーダハッシュ手法を提案する。
論文 参考訳(メタデータ) (2020-02-29T00:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。