A Flexible Plug-and-Play Module for Generating Variable-Length
- URL: http://arxiv.org/abs/2412.08922v1
- Date: Thu, 12 Dec 2024 04:13:09 GMT
- Title: A Flexible Plug-and-Play Module for Generating Variable-Length
- Authors: Liyang He, Yuren Zhang, Rui Li, Zhenya Huang, Runze Wu, Enhong Chen,
- Abstract summary: Nested Hash Layer (NHL) is a plug-and-play module designed for existing deep supervised hashing models.
NHL simultaneously generates hash codes of varying lengths in a nested manner.
NHL achieves superior retrieval performance across various deep hashing models.
- Score: 61.095479786194836
- License:
- Abstract: Deep supervised hashing has become a pivotal technique in large-scale image retrieval, offering significant benefits in terms of storage and search efficiency. However, existing deep supervised hashing models predominantly focus on generating fixed-length hash codes. This approach fails to address the inherent trade-off between efficiency and effectiveness when using hash codes of varying lengths. To determine the optimal hash code length for a specific task, multiple models must be trained for different lengths, leading to increased training time and computational overhead. Furthermore, the current paradigm overlooks the potential relationships between hash codes of different lengths, limiting the overall effectiveness of the models. To address these challenges, we propose the Nested Hash Layer (NHL), a plug-and-play module designed for existing deep supervised hashing models. The NHL framework introduces a novel mechanism to simultaneously generate hash codes of varying lengths in a nested manner. To tackle the optimization conflicts arising from the multiple learning objectives associated with different code lengths, we further propose an adaptive weights strategy that dynamically monitors and adjusts gradients during training. Additionally, recognizing that the structural information in longer hash codes can provide valuable guidance for shorter hash codes, we develop a long-short cascade self-distillation method within the NHL to enhance the overall quality of the generated hash codes. Extensive experiments demonstrate that NHL not only accelerates the training process but also achieves superior retrieval performance across various deep hashing models. Our code is publicly available at https://github.com/hly1998/NHL.
Related papers
- SECRET: Towards Scalable and Efficient Code Retrieval via Segmented Deep Hashing [83.35231185111464]
Deep learning has shifted the retrieval paradigm from lexical-based matching to encode source code and queries into vector representations.
Previous research proposes deep hashing-based methods, which generate hash codes for queries and code snippets and use Hamming distance for rapid recall of code candidates.
We propose a novel approach, which converts long hash codes calculated by existing deep hashing approaches into several short hash code segments through an iterative training strategy.
arXiv Detail & Related papers (2024-12-16T12:51:35Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
In this paper, we prove that inter-class distinctiveness and intra-class compactness among hash codes determine the lower bound of hash codes' performance.
We then propose a surrogate model to fully exploit the above objective by estimating the posterior of hash codes and controlling it, which results in a low-bias optimization.
By testing on a series of hash-models, we obtain performance improvements among all of them, with an up to $26.5%$ increase in mean Average Precision and an up to $20.5%$ increase in accuracy.
arXiv Detail & Related papers (2022-10-12T03:30:56Z) - One Loss for All: Deep Hashing with a Single Cosine Similarity based
Learning Objective [86.48094395282546]
A deep hashing model typically has two main learning objectives: to make the learned binary hash codes discriminative and to minimize a quantization error.
We propose a novel deep hashing model with only a single learning objective.
Our model is highly effective, outperforming the state-of-the-art multi-loss hashing models on three large-scale instance retrieval benchmarks.
arXiv Detail & Related papers (2021-09-29T14:27:51Z) - MOON: Multi-Hash Codes Joint Learning for Cross-Media Retrieval [30.77157852327981]
Cross-media hashing technique has attracted increasing attention for its high computation efficiency and low storage cost.
We develop a novel Multiple hash cOdes jOint learNing method (MOON) for cross-media retrieval.
arXiv Detail & Related papers (2021-08-17T14:47:47Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
We propose an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing.
We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search.
We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH.
arXiv Detail & Related papers (2021-03-26T13:33:48Z) - Fast Class-wise Updating for Online Hashing [196.14748396106955]
This paper presents a novel supervised online hashing scheme, termed Fast Class-wise Updating for Online Hashing (FCOH)
A class-wise updating method is developed to decompose the binary code learning and alternatively renew the hash functions in a class-wise fashion, which well addresses the burden on large amounts of training batches.
To further achieve online efficiency, we propose a semi-relaxation optimization, which accelerates the online training by treating different binary constraints independently.
arXiv Detail & Related papers (2020-12-01T07:41:54Z) - Reinforcing Short-Length Hashing [61.75883795807109]
Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
arXiv Detail & Related papers (2020-04-24T02:23:52Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
Adversarial autoencoders are shown to be able to implicitly learn a robust, locality-preserving hash function that generates balanced and high-quality hash codes.
The existing adversarial hashing methods are inefficient to be employed for large-scale image retrieval applications.
We propose a new adversarial-autoencoder hashing approach that has a much lower sample requirement and computational cost.
arXiv Detail & Related papers (2020-02-29T00:22:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.