論文の概要: Nested Hash Layer: A Plug-and-play Module for Multiple-length Hash Code Learning
- arxiv url: http://arxiv.org/abs/2412.08922v2
- Date: Fri, 30 May 2025 08:09:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 15:03:33.545807
- Title: Nested Hash Layer: A Plug-and-play Module for Multiple-length Hash Code Learning
- Title(参考訳): Nested Hash Layer: 複数の長さのハッシュコード学習のためのプラグイン・アンド・プレイモジュール
- Authors: Liyang He, Yuren Zhang, Rui Li, Zhenya Huang, Runze Wu, Enhong Chen,
- Abstract要約: Nested Hash Layer (NHL) は、深い教師付きハッシュモデルのためのプラグイン・アンド・プレイモジュールである。
NHLは、複数の長さのハッシュコードをネスト構造で同時に生成する。
NHLは、様々な深層型ハッシュモデルに対して、トレーニング速度を約5~8倍に向上させる。
- 参考スコア(独自算出の注目度): 61.095479786194836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep supervised hashing is essential for efficient storage and search in large-scale image retrieval. Traditional deep supervised hashing models generate single-length hash codes, but this creates a trade-off between efficiency and effectiveness for different code lengths. To find the optimal length for a task, multiple models must be trained, increasing time and computation. Furthermore, relationships between hash codes of different lengths are often ignored. To address these issues, we propose the Nested Hash Layer (NHL), a plug-and-play module for deep supervised hashing models. NHL generates hash codes of multiple lengths simultaneously in a nested structure. To resolve optimization conflicts from multiple learning objectives, we introduce a dominance-aware dynamic weighting strategy to adjust gradients. Additionally, we propose a long-short cascade self-distillation method, where long hash codes guide the learning of shorter ones, improving overall code quality. Experiments indicate that the NHL achieves an overall training speed improvement of approximately 5 to 8 times across various deep supervised hashing models and enhances the average performance of these models by about 3.4%.
- Abstract(参考訳): 大規模画像検索における効率的なストレージと検索には,深い教師付きハッシュが不可欠である。
従来の深い教師付きハッシュモデルは、単一の長さのハッシュコードを生成するが、それによって、コード長の効率性と効率性のトレードオフが生じる。
タスクの最適な長さを見つけるには、複数のモデルをトレーニングし、時間と計算量を増やす必要がある。
また、異なる長さのハッシュコード間の関係は無視されることが多い。
これらの問題に対処するため,深い教師付きハッシュモデルのためのプラグイン・アンド・プレイモジュールであるNested Hash Layer (NHL)を提案する。
NHLは、複数の長さのハッシュコードをネスト構造で同時に生成する。
複数の学習目標からの最適化競合を解決するために,勾配を調整するために優位性を考慮した動的重み付け戦略を導入する。
さらに,長いハッシュコードが短いハッシュの学習をガイドし,全体的なコード品質を向上させる長短のカスケード自己蒸留法を提案する。
実験の結果、NHLは様々な深層ハッシュモデルに対して5~8倍のトレーニング速度の向上を実現し、これらのモデルの平均性能を約3.4%向上させた。
関連論文リスト
- SECRET: Towards Scalable and Efficient Code Retrieval via Segmented Deep Hashing [83.35231185111464]
ディープラーニングは、検索パラダイムを語彙ベースのマッチングから、ソースコードとクエリをベクトル表現にエンコードした。
従来の研究では、クエリやコードスニペットのハッシュコードを生成し、ハミング距離を使ってコード候補を高速にリコールするディープハッシュベースの手法が提案されている。
提案手法は,既存の深層ハッシュ法によって計算された長いハッシュコードを,反復的学習戦略により複数の短いハッシュコードセグメントに変換する手法である。
論文 参考訳(メタデータ) (2024-12-16T12:51:35Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
本稿では,ハッシュ符号間のクラス間の差分性とクラス内圧縮性が,ハッシュ符号の性能の低い境界を決定することを証明する。
次に、ハッシュコードの後部を推定し、それを制御することにより、上記の目的を完全に活用する代理モデルを提案し、低バイアス最適化を実現する。
一連のハッシュモデルをテストすることで、平均精度が最大で26.5%、精度が最大で20.5%向上した。
論文 参考訳(メタデータ) (2022-10-12T03:30:56Z) - CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing [42.67510119856105]
GAN(Generative Adversarial Networks)のような生成モデルは、画像ハッシュモデルで合成データを生成することができる。
GANは訓練が難しいため、ハッシュアプローチが生成モデルとハッシュ関数を共同で訓練するのを防ぐことができる。
本稿では,エネルギーをベースとした協調学習に基づく新しい協調ハッシュネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-09T15:42:36Z) - One Loss for All: Deep Hashing with a Single Cosine Similarity based
Learning Objective [86.48094395282546]
ディープハッシュモデルは通常、学習されたバイナリハッシュコードの識別と量子化エラーの最小化という2つの学習目標を持つ。
本稿では,1つの学習目的しか持たない新しい深層ハッシュモデルを提案する。
我々のモデルは,3つの大規模インスタンス検索ベンチマークにおいて,最先端のマルチロスハッシュモデルより優れている。
論文 参考訳(メタデータ) (2021-09-29T14:27:51Z) - MOON: Multi-Hash Codes Joint Learning for Cross-Media Retrieval [30.77157852327981]
クロスメディアハッシュ技術は高い計算効率と低ストレージコストで注目を集めている。
クロスメディア検索のための新しいMultiple hash cOdes jOint learNing法(MOON)を開発した。
論文 参考訳(メタデータ) (2021-08-17T14:47:47Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
マルチインデックスハッシュに最適化することで,効率的かつ高効率なハッシュコードを学習する教師なしハッシュモデルを提案する。
文書類似度検索のタスクにおいて、MISHと最先端のセマンティックハッシュベースラインを実験的に比較する。
マルチインデックスハッシュは、線形スキャンと比較してベースラインの効率も向上しますが、MISHよりも33%遅くなっています。
論文 参考訳(メタデータ) (2021-03-26T13:33:48Z) - Fast Class-wise Updating for Online Hashing [196.14748396106955]
本稿では,FCOH(Fast Class-wise Updating for Online Hashing)と呼ばれる新しいオンラインハッシュ方式を提案する。
クラスワイズ更新法は、バイナリコード学習を分解し、代わりにクラスワイズ方式でハッシュ関数を更新する。
オンラインの効率をより高めるために,異なるバイナリ制約を独立に扱うことで,オンライントレーニングを高速化する半緩和最適化を提案する。
論文 参考訳(メタデータ) (2020-12-01T07:41:54Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
競合するオートエンコーダは、バランスよく高品質なハッシュコードを生成する堅牢で局所性を保存するハッシュ関数を暗黙的に学習できることが示されている。
既存の逆ハッシュ法は、大規模な画像検索に非効率である。
本稿では,サンプル要求と計算コストを大幅に低減した,新しい対向型オートエンコーダハッシュ手法を提案する。
論文 参考訳(メタデータ) (2020-02-29T00:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。