論文の概要: ZigZagkv: Dynamic KV Cache Compression for Long-context Modeling based on Layer Uncertainty
- arxiv url: http://arxiv.org/abs/2412.09036v1
- Date: Thu, 12 Dec 2024 07:52:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:33:36.138710
- Title: ZigZagkv: Dynamic KV Cache Compression for Long-context Modeling based on Layer Uncertainty
- Title(参考訳): ZigZagkv:層不確実性に基づく長期コンテキストモデリングのための動的KVキャッシュ圧縮
- Authors: Meizhi Zhong, Xikai Liu, Chen Zhang, Yikun Lei, Yan Gao, Yao Hu, Kehai Chen, Min Zhang,
- Abstract要約: 推論長が増加するにつれて、KVキャッシュの増加はメモリ外問題を引き起こす可能性がある。
本稿では,各層に予算規模を割り当てるために,層不確実性を利用した簡易かつ効果的なKVキャッシュ圧縮手法を提案する。
実験の結果,提案手法はフルKV推定と比較して,KVキャッシュのメモリ使用量を$sim$20%に削減できることがわかった。
- 参考スコア(独自算出の注目度): 35.947737679664016
- License:
- Abstract: Large Language models (LLMs) have become a research hotspot. To accelerate the inference of LLMs, storing computed caches in memory has become the standard technique. However, as the inference length increases, growing KV caches might lead to out-of-memory issues. Many existing methods address this issue through KV cache compression, primarily by preserving key tokens throughout all layers to reduce information loss. Most of them allocate a uniform budget size for each layer to retain. However, we observe that the minimum budget sizes needed to retain essential information vary across layers and models based on the perspectives of attention and hidden state output. Building on this observation, this paper proposes a simple yet effective KV cache compression method that leverages layer uncertainty to allocate budget size for each layer. Experimental results show that the proposed method can reduce memory usage of the KV caches to only $\sim$20\% when compared to Full KV inference while achieving nearly lossless performance.
- Abstract(参考訳): 大規模言語モデル(LLM)が研究ホットスポットとなっている。
LLMの推論を高速化するために、計算キャッシュをメモリに格納することが標準技術となっている。
しかし、推論長が増加するにつれて、KVキャッシュの増加はメモリ外問題を引き起こす可能性がある。
既存の多くのメソッドはKVキャッシュ圧縮を通じてこの問題に対処し、主に情報損失を減らすためにすべてのレイヤにキートークンを保存する。
それらの多くは、各レイヤが保持する均一な予算サイズを割り当てている。
しかし、本質的な情報を保持するために必要な最小限の予算規模は、注意と隠れ状態の出力の観点から層やモデルによって異なる。
本報告では, 各層に予算規模を割り当てるために, 層不確実性を利用した簡易かつ効果的なKVキャッシュ圧縮手法を提案する。
実験の結果,提案手法により,KVキャッシュのメモリ使用量を最大$\sim$20\%に削減できることがわかった。
関連論文リスト
- BaKlaVa -- Budgeted Allocation of KV cache for Long-context Inference [6.222836318380985]
BaKlaVaは、モデル全体で個々のKVキャッシュに対して最適なメモリを割り当てる手法である。
LLaMA-3-8BモデルとQwen2.5-7Bモデルについて検討した。
論文 参考訳(メタデータ) (2025-02-18T04:08:29Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
キーバリューキャッシュサイズを減らすための既存のアプローチは、圧縮戦略を学ぶためのモデルを微調整するか、シーケンス長を減らすためにアテンションスコアを利用するかのいずれかである。
キャッシュされたKVペアに対して、$L$とアテンションスコアとの間に明らかな相関関係が見られ、キー埋め込みの低い$L$がデコード時に高いアテンションスコアをもたらす。
実験の結果,この単純な手法により,言語モデリングやニードル・イン・ア・ヘイスタックタスクでは50%,パスキー検索タスクでは90%,精度を損なうことなく,KVキャッシュサイズを50%削減できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T11:35:16Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z) - Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference [78.65321721142624]
我々はキー値(KV)キャッシュによって課されるメモリボトルネックに焦点を当てる。
既存のKVキャッシュ手法は、比較的重要でないKVペアの大きなスワストを刈り取ったり、取り除いたりすることでこの問題に対処する。
本稿では,固定サイズキャッシュと退避型キャッシュを簡易に統合したLESSを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:54:56Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。