論文の概要: Multi-Task Learning with LLMs for Implicit Sentiment Analysis: Data-level and Task-level Automatic Weight Learning
- arxiv url: http://arxiv.org/abs/2412.09046v1
- Date: Thu, 12 Dec 2024 08:15:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:34:20.229082
- Title: Multi-Task Learning with LLMs for Implicit Sentiment Analysis: Data-level and Task-level Automatic Weight Learning
- Title(参考訳): LLMを用いたマルチタスク学習によるインシシト感性分析:データレベルとタスクレベル自動重み学習
- Authors: Wenna Lai, Haoran Xie, Guandong Xu, Qing Li,
- Abstract要約: 暗黙の感情分析は、有能なキュー語が欠如していることによる重大な課題を呈する。
MT-ISAは,大規模言語モデルの生成と推論機能を活用することでISAを強化する新しいMTLフレームワークである。
データレベルとタスクレベルの自動重み付け学習(AWL)を導入し、関係を動的に識別し、信頼性の高いデータや重要なタスクを優先する。
- 参考スコア(独自算出の注目度): 18.836998294161834
- License:
- Abstract: Implicit sentiment analysis (ISA) presents significant challenges due to the absence of salient cue words. Previous methods have struggled with insufficient data and limited reasoning capabilities to infer underlying opinions. Integrating multi-task learning (MTL) with large language models (LLMs) offers the potential to enable models of varying sizes to reliably perceive and recognize genuine opinions in ISA. However, existing MTL approaches are constrained by two sources of uncertainty: data-level uncertainty, arising from hallucination problems in LLM-generated contextual information, and task-level uncertainty, stemming from the varying capacities of models to process contextual information. To handle these uncertainties, we introduce MT-ISA, a novel MTL framework that enhances ISA by leveraging the generation and reasoning capabilities of LLMs through automatic MTL. Specifically, MT-ISA constructs auxiliary tasks using generative LLMs to supplement sentiment elements and incorporates automatic MTL to fully exploit auxiliary data. We introduce data-level and task-level automatic weight learning (AWL), which dynamically identifies relationships and prioritizes more reliable data and critical tasks, enabling models of varying sizes to adaptively learn fine-grained weights based on their reasoning capabilities. We investigate three strategies for data-level AWL, while also introducing homoscedastic uncertainty for task-level AWL. Extensive experiments reveal that models of varying sizes achieve an optimal balance between primary prediction and auxiliary tasks in MT-ISA. This underscores the effectiveness and adaptability of our approach.
- Abstract(参考訳): インプシット感情分析 (ISA) は, 有意な語句の欠如により, 重大な課題を呈している。
これまでの手法では、根底にある意見を推測するためのデータ不足と推論能力の制限に悩まされてきた。
マルチタスク学習(MTL)と大規模言語モデル(LLM)を統合することで、さまざまなサイズのモデルがISAの真の意見を確実に知覚し、認識することができる。
しかし、既存のMTLアプローチは、LLM生成した文脈情報における幻覚問題から生じるデータレベルの不確実性と、文脈情報を処理するためのモデルの様々な能力から生じるタスクレベルの不確実性という2つの要因によって制約されている。
これらの不確実性に対処するために,自動MTLによるLLMの生成と推論機能を活用することでISAを強化する新しいMTLフレームワークMT-ISAを導入する。
具体的には、MT-ISAは、感情要素を補うためにジェネレーティブLLMを使用して補助タスクを構築し、補助データを完全に活用するために自動MTLを組み込む。
データレベルとタスクレベルの自動重み学習(AWL)を導入し、動的に関係を識別し、より信頼性の高いデータと重要なタスクを優先順位付けし、様々なサイズのモデルがその推論能力に基づいて微妙な重みを適応的に学習できるようにする。
データレベルAWLの3つの戦略を検討するとともに、タスクレベルAWLの相補的不確実性も導入する。
広範囲な実験により、MT-ISAの一次予測と補助タスクの最適なバランスが得られた。
これは我々のアプローチの有効性と適応性を強調します。
関連論文リスト
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
我々は、VidQAベンチマークとデータセットのバイアスを特定するために、MIS(Modality importance score)を導入する。
また,最新のMLLMを用いてモダリティの重要度を推定する手法を提案する。
以上の結果から,既存のデータセットでは,モダリティの不均衡による情報統合が効果的に行われていないことが示唆された。
論文 参考訳(メタデータ) (2024-08-22T23:32:42Z) - Defining Boundaries: A Spectrum of Task Feasibility for Large Language Models [6.008311204104302]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示しているが、多くの場合、その知識や能力を超えるクエリを処理できない。
本稿では,LLMが能力を超えるために必要なスキルのために,実用不可能なタスクを認識し,拒否する必要性に対処する。
論文 参考訳(メタデータ) (2024-08-11T22:58:23Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Token-Efficient Leverage Learning in Large Language Models [13.830828529873056]
大規模言語モデル(LLM)は様々なタスクで優れていますが、高リソースのシナリオではより良く機能しています。
データ不足と特定のタスクにLLMを適用することの難しさは、この課題を複雑にしている。
本稿では,Token-Efficient Leverage Learning (TELL) と呼ばれる方法論の合理化実装を提案する。
論文 参考訳(メタデータ) (2024-04-01T04:39:44Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。