論文の概要: A Context-Enhanced Framework for Sequential Graph Reasoning
- arxiv url: http://arxiv.org/abs/2412.09056v1
- Date: Thu, 12 Dec 2024 08:27:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:32:59.455023
- Title: A Context-Enhanced Framework for Sequential Graph Reasoning
- Title(参考訳): 逐次グラフ推論のための文脈拡張フレームワーク
- Authors: Shuo Shi, Chao Peng, Chenyang Xu, Zhengfeng Yang,
- Abstract要約: 本稿では,様々なトレンド分野の基本課題であるグラフ構造化データに対する逐次推論について検討する。
既存のニューラルネットワークアーキテクチャを一般化し、コンテキスト強化フレームワークを提案する。
このフレームワークは既存の手法と効果的に統合でき、推論能力を高めることができる。
- 参考スコア(独自算出の注目度): 6.207627263146009
- License:
- Abstract: The paper studies sequential reasoning over graph-structured data, which stands as a fundamental task in various trending fields like automated math problem solving and neural graph algorithm learning, attracting a lot of research interest. Simultaneously managing both sequential and graph-structured information in such tasks presents a notable challenge. Over recent years, many neural architectures in the literature have emerged to tackle the issue. In this work, we generalize the existing architectures and propose a context-enhanced framework. The crucial innovation is that the reasoning of each step does not only rely on the outcome of the preceding step but also leverages the aggregation of information from more historical outcomes. The idea stems from our observation that in sequential graph reasoning, each step's outcome has a much stronger inner connection with each other compared to traditional seq-to-seq tasks. We show that the framework can effectively integrate with the existing methods, enhancing their reasoning abilities. Empirical evaluations are conducted on the challenging CLRS Reasoning Benchmark, and the results demonstrate that the proposed framework significantly improves the performance of existing architectures, yielding state-of-the-art results across the majority of the datasets within the benchmark.
- Abstract(参考訳): グラフ構造データに対するシーケンシャル推論は、自動数学問題解決やニューラルグラフアルゴリズム学習など、様々なトレンド分野の基本課題であり、多くの研究関心を集めている。
このようなタスクにおいて、シーケンシャル情報とグラフ構造化情報の両方を同時に管理することは、注目すべき課題である。
近年、文学における多くのニューラルアーキテクチャがこの問題に対処するために現れている。
本研究では,既存のアーキテクチャを一般化し,コンテキスト強化フレームワークを提案する。
重要な革新は、各ステップの推論が前のステップの結果に依存するだけでなく、より歴史的な結果からの情報の集約も活用していることである。
この考え方は、逐次グラフの推論において、各ステップの結果は従来のSeq-to-seqタスクと比較して、互いにより強い内部接続を持つ、という我々の観察に由来する。
このフレームワークは既存の手法と効果的に統合でき、推論能力を高めることができる。
CLRS Reasoning Benchmarkで実証評価を行い、提案したフレームワークが既存のアーキテクチャの性能を大幅に改善し、ベンチマーク内のほとんどのデータセットに最先端の結果をもたらすことを示した。
関連論文リスト
- Advanced RAG Models with Graph Structures: Optimizing Complex Knowledge Reasoning and Text Generation [7.3491970177535]
本研究では,グラフニューラルネットワーク(GNN)を組み合わせたグラフ構造データ処理手法を提案する。
この結果から,本論文で提案するグラフベースRAGモデルは,品質,知識の整合性,推論能力の点で従来の世代モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-06T00:23:55Z) - Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Transformers Utilization in Chart Understanding: A Review of Recent Advances & Future Trends [1.124958340749622]
本稿では、理解(CU)における顕著な研究をレビューする。
それは、End-to-End(E2E)ソリューション内でトランスフォーマーを使用するState-of-The-Art(SoTA)フレームワークに焦点を当てている。
この記事では、CUソリューションを進める上で重要な課題を特定し、将来有望な方向性を概説する。
論文 参考訳(メタデータ) (2024-10-05T16:26:44Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - Unsupervised Graph Neural Architecture Search with Disentangled
Self-supervision [51.88848982611515]
教師なしグラフニューラルアーキテクチャサーチは、文献では未発見のままである。
本稿では,Distangled Self-supervised Graph Neural Architecture Searchモデルを提案する。
我々のモデルは、教師なしの方法で、いくつかのベースライン手法に対して最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-03-08T05:23:55Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Graph Collaborative Reasoning [18.45161138837384]
グラフ協調推論(GCR)は、論理的推論の観点からグラフ上の関係推論に隣接リンク情報を使用することができる。
そこで我々は,グラフ構造を論理式に変換する簡単な手法を提案し,リンク予測タスクをニューラルネットワーク推論問題に変換する。
本研究の有効性を示すため,一般的なベンチマークデータセットに基づくリンク予測やレコメンデーションなどのグラフ関連タスクの実験を行った。
論文 参考訳(メタデータ) (2021-12-27T14:27:58Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
本稿では,モデル複雑性を増大させることなく,高い競争力を持つ関係表現性を実現する軽量なモデリングフレームワークを提案する。
本フレームワークは,評価関数の設計に重点を置いており,1)十分な特徴相互作用の促進,2)関係の対称性と反対称性の両特性の保存,という2つの重要な特徴を強調している。
論文 参考訳(メタデータ) (2020-05-02T15:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。