論文の概要: Neural Networks for Threshold Dynamics Reconstruction
- arxiv url: http://arxiv.org/abs/2412.09079v1
- Date: Thu, 12 Dec 2024 09:03:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:58.026385
- Title: Neural Networks for Threshold Dynamics Reconstruction
- Title(参考訳): 閾値ダイナミクス再構成のためのニューラルネットワーク
- Authors: Elisa Negrini, Almanzo Jiahe Gao, Abigail Bowering, Wei Zhu, Luca Capogna,
- Abstract要約: 本稿では,2つの畳み込みニューラルネットワーク(CNN)アーキテクチャを導入し,ビデオデータから事前進化のためのしきい値ダイナミクスをモデル化し,学習する。
最初のモデルは(シングルダイナミックス)MBOネットワークと呼ばれ、新しいダイナミックスに適応することなく、入力ビデオごとに特定のカーネルとしきい値を学ぶ。
第2のメタラーニングMBOネットワークは、入力毎にパラメータを適用することで、多様なしきい値のダイナミクスを一般化する。
- 参考スコア(独自算出の注目度): 2.862876211338409
- License:
- Abstract: We introduce two convolutional neural network (CNN) architectures, inspired by the Merriman-Bence-Osher (MBO) algorithm and by cellular automatons, to model and learn threshold dynamics for front evolution from video data. The first model, termed the (single-dynamics) MBO network, learns a specific kernel and threshold for each input video without adapting to new dynamics, while the second, a meta-learning MBO network, generalizes across diverse threshold dynamics by adapting its parameters per input. Both models are evaluated on synthetic and real-world videos (ice melting and fire front propagation), with performance metrics indicating effective reconstruction and extrapolation of evolving boundaries, even under noisy conditions. Empirical results highlight the robustness of both networks across varied synthetic and real-world dynamics.
- Abstract(参考訳): 本稿では,Merriman-Bence-Osher(MBO)アルゴリズムとセルオートマトンにインスパイアされた2つの畳み込みニューラルネットワーク(CNN)アーキテクチャを導入し,ビデオデータから事前進化のためのしきい値ダイナミクスをモデル化し学習する。
第1のモデルは(シングルダイナミックス)MBOネットワークと呼ばれ、新しいダイナミックスに適応することなく、入力ビデオごとに特定のカーネルとしきい値を学び、第2のメタラーニングMBOネットワークは、入力毎にパラメータを適用することで、多様なしきい値ダイナミクスを一般化する。
どちらのモデルも、合成および実世界のビデオ(氷融解と火災前伝播)で評価され、ノイズのある条件下であっても、進化する境界の効果的な再構築と外挿を示す性能指標が示される。
経験的な結果は、様々な合成力学と実世界の力学にまたがる両方のネットワークの堅牢性を強調している。
関連論文リスト
- Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
我々は,統一的かつ大規模に拡張可能なニューラルネットワーク残差拡散モデルフレームワーク(Neural-RDM)を提案する。
提案したニューラル残差モデルは、画像およびビデオ生成ベンチマークの最先端スコアを取得する。
論文 参考訳(メタデータ) (2024-06-19T04:57:18Z) - A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models [13.283281356356161]
本稿では3つの観点から,ニューラルネットワークの統計理論に関する文献をレビューする。
ニューラルネットワークの過剰なリスクに関する調査結果をレビューする。
ニューラルネットワークが、目に見えないデータでうまく一般化できるソリューションを見つける方法に答えようとする論文」をレビューする。
論文 参考訳(メタデータ) (2024-01-14T02:30:19Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
ディープニューラルネットワークの解釈における中核的な課題は、同じタスクのためにトレーニングされた異なるネットワークによって実装された基盤となるアルゴリズム間の共通点を特定することである。
この問題に触発されたDYNAMOは,各点がニューラルネットワークモデルに対応する低次元多様体を構築するアルゴリズムであり,対応するニューラルネットワークが同様のハイレベルな計算処理を実行する場合,その近傍に2つの点が存在する。
DYNAMOは、事前訓練されたニューラルネットワークのコレクションを入力として、隠された状態のダイナミクスとコレクション内の任意のモデルの出力をエミュレートするメタモデルを出力する。
論文 参考訳(メタデータ) (2023-02-27T19:00:05Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
ニューラルネットワークのトレーニングは、計算集約的なタスクである。
本稿では,パラメータのダイナミクスの相関に基づくモデルを提案する。
この表現は、基礎となるトレーニングダイナミクスの理解を深め、より良い加速技術を設計するための道を開くことができる。
論文 参考訳(メタデータ) (2022-12-18T08:34:11Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
固体の変形を効率的に学習するための3種類のニューラルネットワークアーキテクチャを実証する。
最初の2つは、最近提案されたCNN U-NETとMagNETフレームワークに基づいており、メッシュベースのデータで学習する上で有望なパフォーマンスを示している。
第3のアーキテクチャであるPerceiver IOは、注目に基づくニューラルネットワークのファミリに属する、非常に最近のアーキテクチャである。
論文 参考訳(メタデータ) (2022-12-01T13:10:56Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
適応型ニューラルネットワークの動的対向攻撃問題について検討する。
本稿では,LGM(Leaded Gradient Method)を提案する。
我々のLGMは、動的無意識攻撃法と比較して、優れた敵攻撃性能を達成している。
論文 参考訳(メタデータ) (2022-10-15T01:32:08Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
チャネルのあらゆる変更に適応できるオンライントレーニングフレームワークを導入します。
我々のフレームワークは、非常にダイナミックなチャネル上での最近のニューラルネットワークモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-08-17T02:01:18Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。