論文の概要: Neural Networks for Threshold Dynamics Reconstruction
- arxiv url: http://arxiv.org/abs/2412.09079v1
- Date: Thu, 12 Dec 2024 09:03:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 15:57:56.592487
- Title: Neural Networks for Threshold Dynamics Reconstruction
- Title(参考訳): 閾値ダイナミクス再構成のためのニューラルネットワーク
- Authors: Elisa Negrini, Almanzo Jiahe Gao, Abigail Bowering, Wei Zhu, Luca Capogna,
- Abstract要約: 本稿では,2つの畳み込みニューラルネットワーク(CNN)アーキテクチャを導入し,ビデオデータから事前進化のためのしきい値ダイナミクスをモデル化し,学習する。
最初のモデルは(シングルダイナミックス)MBOネットワークと呼ばれ、新しいダイナミックスに適応することなく、入力ビデオごとに特定のカーネルとしきい値を学ぶ。
第2のメタラーニングMBOネットワークは、入力毎にパラメータを適用することで、多様なしきい値のダイナミクスを一般化する。
- 参考スコア(独自算出の注目度): 2.862876211338409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce two convolutional neural network (CNN) architectures, inspired by the Merriman-Bence-Osher (MBO) algorithm and by cellular automatons, to model and learn threshold dynamics for front evolution from video data. The first model, termed the (single-dynamics) MBO network, learns a specific kernel and threshold for each input video without adapting to new dynamics, while the second, a meta-learning MBO network, generalizes across diverse threshold dynamics by adapting its parameters per input. Both models are evaluated on synthetic and real-world videos (ice melting and fire front propagation), with performance metrics indicating effective reconstruction and extrapolation of evolving boundaries, even under noisy conditions. Empirical results highlight the robustness of both networks across varied synthetic and real-world dynamics.
- Abstract(参考訳): 本稿では,Merriman-Bence-Osher(MBO)アルゴリズムとセルオートマトンにインスパイアされた2つの畳み込みニューラルネットワーク(CNN)アーキテクチャを導入し,ビデオデータから事前進化のためのしきい値ダイナミクスをモデル化し学習する。
第1のモデルは(シングルダイナミックス)MBOネットワークと呼ばれ、新しいダイナミックスに適応することなく、入力ビデオごとに特定のカーネルとしきい値を学び、第2のメタラーニングMBOネットワークは、入力毎にパラメータを適用することで、多様なしきい値ダイナミクスを一般化する。
どちらのモデルも、合成および実世界のビデオ(氷融解と火災前伝播)で評価され、ノイズのある条件下であっても、進化する境界の効果的な再構築と外挿を示す性能指標が示される。
経験的な結果は、様々な合成力学と実世界の力学にまたがる両方のネットワークの堅牢性を強調している。
関連論文リスト
- BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning [30.781578037476347]
高度にフレキシブルな非自律型ニューラル常微分方程式(ODE)を用いたトランスフォーマーアーキテクチャのモデリング手法を提案する。
提案モデルでは,ニューラルネットワークによる注目度とフィードフォワードブロックの重みをパラメータ化し,これらの重みを連続層インデックスの関数として表現する。
我々のニューラルODE変換器は、さまざまな構成やデータセットにわたるバニラ変換器に匹敵するパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-03-03T09:12:14Z) - Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
我々は,統一的かつ大規模に拡張可能なニューラルネットワーク残差拡散モデルフレームワーク(Neural-RDM)を提案する。
提案したニューラル残差モデルは、画像およびビデオ生成ベンチマークの最先端スコアを取得する。
論文 参考訳(メタデータ) (2024-06-19T04:57:18Z) - A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models [13.283281356356161]
本稿では3つの観点から,ニューラルネットワークの統計理論に関する文献をレビューする。
ニューラルネットワークの過剰なリスクに関する調査結果をレビューする。
ニューラルネットワークが、目に見えないデータでうまく一般化できるソリューションを見つける方法に答えようとする論文」をレビューする。
論文 参考訳(メタデータ) (2024-01-14T02:30:19Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
ニューラルネットワークのトレーニングは、計算集約的なタスクである。
本稿では,パラメータのダイナミクスの相関に基づくモデルを提案する。
この表現は、基礎となるトレーニングダイナミクスの理解を深め、より良い加速技術を設計するための道を開くことができる。
論文 参考訳(メタデータ) (2022-12-18T08:34:11Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
固体の変形を効率的に学習するための3種類のニューラルネットワークアーキテクチャを実証する。
最初の2つは、最近提案されたCNN U-NETとMagNETフレームワークに基づいており、メッシュベースのデータで学習する上で有望なパフォーマンスを示している。
第3のアーキテクチャであるPerceiver IOは、注目に基づくニューラルネットワークのファミリに属する、非常に最近のアーキテクチャである。
論文 参考訳(メタデータ) (2022-12-01T13:10:56Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
適応型ニューラルネットワークの動的対向攻撃問題について検討する。
本稿では,LGM(Leaded Gradient Method)を提案する。
我々のLGMは、動的無意識攻撃法と比較して、優れた敵攻撃性能を達成している。
論文 参考訳(メタデータ) (2022-10-15T01:32:08Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
チャネルのあらゆる変更に適応できるオンライントレーニングフレームワークを導入します。
我々のフレームワークは、非常にダイナミックなチャネル上での最近のニューラルネットワークモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-08-17T02:01:18Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。