論文の概要: Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion
- arxiv url: http://arxiv.org/abs/2412.09094v2
- Date: Thu, 09 Jan 2025 12:38:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:57:46.121460
- Title: Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion
- Title(参考訳): Filter-then-Generate:知識グラフ補完のための構造テキストアダプタを用いた大規模言語モデル
- Authors: Ben Liu, Jihai Zhang, Fangquan Lin, Cheng Yang, Min Peng,
- Abstract要約: 大規模言語モデル(LLM)は、膨大な固有の知識と優れた意味理解能力を示す。
実証的な証拠は、LLMは従来の知識グラフ補完手法よりも一貫して性能が悪いことを示唆している。
これらの課題に対処するために,FtGという新しい命令チューニング手法を提案する。
- 参考スコア(独自算出の注目度): 20.973071287301067
- License:
- Abstract: Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a \textit{filter-then-generate} paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at \url{https://github.com/LB0828/FtG}.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理における様々なタスクに革命をもたらした、膨大な固有の知識と優れた意味理解能力を示す。
彼らの成功にもかかわらず、LLMが知識グラフ補完(KGC)を実行できるようにするには、重大なギャップが残っている。
実証的な証拠は、LLMが従来のKGCアプローチよりも、洗練されたプロンプト設計や調整されたインストラクションチューニングによっても、一貫して性能が悪くなることを示唆している。
基本的に、LCMをKGCに適用することは、膨大なエンティティ候補、LCMの幻覚問題、グラフ構造の過小評価など、いくつかの重要な課題をもたらす。
これらの課題に対処するために,FtGという新しい命令チューニング手法を提案する。
具体的には、textit{filter-then-generate}パラダイムを示し、KGCタスクを複数の質問形式に定式化する。
このようにして、幻覚による問題を緩和しながらLLMの能力を利用することができる。
さらに、フレキシブルなエゴグラフシリアライズプロンプトを考案し、構造化情報とテキスト情報を文脈的に結合する構造テキストアダプタを用いる。
実験結果から,FtGは既存の最先端手法と比較してかなりの性能向上を達成できた。
命令データセットとコードは \url{https://github.com/LB0828/FtG} で公開されている。
関連論文リスト
- Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning [34.85741925091139]
Graph-DPEPフレームワークは、自然言語で提示された三重項の説明思想の背景にある。
我々は,サブグラフに埋め込まれた推論的思考を活用することで,型リスト全体の「アンサンブルプレイ」生成を開発する。
論文 参考訳(メタデータ) (2024-11-05T07:12:36Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
社会的関係推論は、友人、配偶者、同僚などの関係カテゴリを画像から識別することを目的としている。
まず、VFM(Vision Foundation Models)の知覚能力と、モジュラーフレームワーク内でのLLM(Large Language Models)の推論能力を組み合わせた、シンプルだが巧妙な名前のフレームワークを提示する。
論文 参考訳(メタデータ) (2024-10-28T18:10:26Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
大規模言語モデル(LLM)は因果的かつシーケンシャルな視点で入力コンテキストを処理する。
本稿では,コンテキスト構造化という新しい概念を提案する。
具体的には、平易で秩序のない文脈文を、適切に順序付けされ階層的に構造化された要素に変換する。
論文 参考訳(メタデータ) (2024-07-23T12:33:58Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Dr.E Bridges Graphs with Large Language Models through Words [12.22063024099311]
本稿では,LLMグラフアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的な '' を理解可能な自然言語に効果的に翻訳することができる。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Can LLMs perform structured graph reasoning? [4.676784872259775]
LLM(Pretrained Large Language Models)は、言語ベースのプロンプトだけで様々な推論能力を示す。
本稿では,半構造化タスクのプロキシとして,様々なグラフ推論タスクを設計する。
上記の課題に対して,5種類のインストラクト微細化LDM (GPT-4, GPT-3.5, Claude-2, Llama-2, Palm-2) をベンチマークした。
論文 参考訳(メタデータ) (2024-02-02T09:45:33Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Can LLMs Effectively Leverage Graph Structural Information through Prompts, and Why? [18.328637750057037]
大きな言語モデル(LLM)は、リッチテキスト属性でグラフを処理する能力に注目が集まっている。
グラフデータに固有の構造情報の取り込みにより,LLMの予測性能が向上する理由を理解することを目的としている。
論文 参考訳(メタデータ) (2023-09-28T16:58:37Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。