論文の概要: MMD-OPT : Maximum Mean Discrepancy Based Sample Efficient Collision Risk Minimization for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2412.09121v1
- Date: Thu, 12 Dec 2024 09:57:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:56.869809
- Title: MMD-OPT : Maximum Mean Discrepancy Based Sample Efficient Collision Risk Minimization for Autonomous Driving
- Title(参考訳): MMD-OPT : 最大平均差に基づく衝突リスク最小化
- Authors: Basant Sharma, Arun Kumar Singh,
- Abstract要約: MMD-OPTは任意の予測分布下での衝突のリスクを最小限に抑えるための試料効率のよい手法である。
本稿では,これらの2つの概念を用いて衝突リスク推定のための効率的なサロゲートのサンプルを定義する方法について述べる。
- 参考スコア(独自算出の注目度): 2.361853878117761
- License:
- Abstract: We propose MMD-OPT: a sample-efficient approach for minimizing the risk of collision under arbitrary prediction distribution of the dynamic obstacles. MMD-OPT is based on embedding distribution in Reproducing Kernel Hilbert Space (RKHS) and the associated Maximum Mean Discrepancy (MMD). We show how these two concepts can be used to define a sample efficient surrogate for collision risk estimate. We perform extensive simulations to validate the effectiveness of MMD-OPT on both synthetic and real-world datasets. Importantly, we show that trajectory optimization with our MMD-based collision risk surrogate leads to safer trajectories at low sample regimes than popular alternatives based on Conditional Value at Risk (CVaR).
- Abstract(参考訳): 動的障害物の任意の予測分布下での衝突のリスクを最小化するための試料効率の高いMDD-OPTを提案する。
MMD-OPTは、Reproduction Kernel Hilbert Space (RKHS) と関連するMaximum Mean Discrepancy (MMD) の埋め込み分布に基づいている。
本稿では,これらの2つの概念を用いて衝突リスク推定のための効率的なサロゲートのサンプルを定義する方法について述べる。
我々は、MDD-OPTの合成および実世界のデータセットにおける有効性を検証するために、広範囲なシミュレーションを行う。
重要なことは,MDDをベースとした衝突リスクサロゲートによる軌道最適化は,条件付きリスク(CVaR)に基づく一般的な選択肢よりも,低いサンプル状態下での軌道の安全であることを示す。
関連論文リスト
- Decision-Dependent Distributionally Robust Markov Decision Process
Method in Dynamic Epidemic Control [4.644416582073023]
Susceptible-Exposed-Infectious-Recovered (SEIR) モデルは感染症の拡散を表すために広く用いられている。
本稿では,動的流行制御問題に対処するために,分布ロバストマルコフ決定プロセス(DRMDP)を提案する。
論文 参考訳(メタデータ) (2023-06-24T20:19:04Z) - Efficient Stochastic Approximation of Minimax Excess Risk Optimization [36.68685001551774]
我々はMEROを直接対象とする効率的な近似手法を開発した。
最小リスクの推定誤差に起因するバイアスが制御下にあることを示す。
また,各分布から抽出したサンプルの量が異なる場合の現実的シナリオについても検討し,分布依存収束率を導出する手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T02:21:11Z) - Risk-Averse MDPs under Reward Ambiguity [9.929659318167731]
本稿では,リスクと報酬のあいまいさの下で,マルコフ決定過程(MDP)の分布的に堅牢なリターンリスクモデルを提案する。
スケーラブルな一階述語アルゴリズムは大規模問題の解法として設計されている。
論文 参考訳(メタデータ) (2023-01-03T11:06:30Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
カーネル技術は、データサイエンスにおいて最も人気があり柔軟なアプローチの一つである。
平均埋め込みは、最大平均不一致(MMD)と呼ばれる分岐測度をもたらす。
本稿では,基礎となる分布の1つの平均埋め込みが解析的に利用可能である場合のMDD推定の問題に焦点をあてる。
論文 参考訳(メタデータ) (2021-10-15T21:29:27Z) - Fast and Efficient MMD-based Fair PCA via Optimization over Stiefel
Manifold [41.58534159822546]
本稿では,主成分分析(PCA)について,次元推定条件分布の最大誤差(MMD)を最小化するものとして定義する。
我々は最適性保証を提供し、実践的な環境で理論効果を明示的に示す。
論文 参考訳(メタデータ) (2021-09-23T08:06:02Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。