論文の概要: ExpRDiff: Short-exposure Guided Diffusion Model for Realistic Local Motion Deblurring
- arxiv url: http://arxiv.org/abs/2412.09193v1
- Date: Thu, 12 Dec 2024 11:42:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:32:31.390358
- Title: ExpRDiff: Short-exposure Guided Diffusion Model for Realistic Local Motion Deblurring
- Title(参考訳): ExpRDiff:Realistic Local Motion Deblurringのための短時間露光誘導拡散モデル
- Authors: Zhongbao Yang, Jiangxin Dong, Jinhui Tang, Jinshan Pan,
- Abstract要約: そこで本稿では,コンテキストベースの局所的ぼかし検出モジュールを開発し,さらにコンテキスト情報を加えて,ぼかし領域の識別を改善する。
最新のスマートフォンには、短時間露光画像を提供するカメラが備わっていることを考慮し、ぼやけたガイド付き画像復元法を開発した。
上記のコンポーネントを ExpRDiff という名前のシンプルで効果的なネットワークに定式化します。
- 参考スコア(独自算出の注目度): 61.82010103478833
- License:
- Abstract: Removing blur caused by moving objects is challenging, as the moving objects are usually significantly blurry while the static background remains clear. Existing methods that rely on local blur detection often suffer from inaccuracies and cannot generate satisfactory results when focusing solely on blurred regions. To overcome these problems, we first design a context-based local blur detection module that incorporates additional contextual information to improve the identification of blurry regions. Considering that modern smartphones are equipped with cameras capable of providing short-exposure images, we develop a blur-aware guided image restoration method that utilizes sharp structural details from short-exposure images, facilitating accurate reconstruction of heavily blurred regions. Furthermore, to restore images realistically and visually-pleasant, we develop a short-exposure guided diffusion model that explores useful features from short-exposure images and blurred regions to better constrain the diffusion process. Finally, we formulate the above components into a simple yet effective network, named ExpRDiff. Experimental results show that ExpRDiff performs favorably against state-of-the-art methods.
- Abstract(参考訳): 移動物体によるぼやけの除去は、静的な背景が明確でありながら、通常、移動物体は著しくぼやけているため、困難である。
局所的ぼかし検出を頼りにしている既存の手法は、しばしば不正確さに悩まされ、ぼかし領域のみに焦点を合わせると満足な結果が得られない。
これらの問題を克服するために、我々はまずコンテキストベースの局所的ぼかし検出モジュールを設計し、さらにコンテキスト情報を加えて、ぼかし領域の識別を改善する。
最新のスマートフォンは、短露光画像を提供するカメラを備えており、短露光画像からの鋭い構造的詳細を生かしたぼやけたガイド画像復元手法を開発し、鮮やかなぼやけた領域の正確な再構築を容易にする。
さらに,映像を現実的に,かつ視覚的に不快に復元するために,短い露光画像とぼやけた領域から有用な特徴を探索し,拡散過程の制約を改善するショート露光誘導拡散モデルを開発した。
最後に、上記のコンポーネントを ExpRDiff という名前の単純で効果的なネットワークに定式化する。
実験の結果,ExpRDiffは最先端の手法に対して良好に機能することがわかった。
関連論文リスト
- Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View [17.214047499850487]
本稿では,より現実的なシナリオに対するスパースビューから,分解型ニューラルラジアンスフィールド(DeRF)を構築することに焦点を当てる。
Sparse-DeRFは複雑なジョイント最適化を正則化し、緩和されたオーバーフィッティングアーティファクトとラディアンスフィールドの品質を向上した。
2ビュー,4ビュー,6ビューのぼかし画像からDeRFをトレーニングすることにより,Sparse-DeRFの有効性を示す。
論文 参考訳(メタデータ) (2024-07-09T07:36:54Z) - CLIPAway: Harmonizing Focused Embeddings for Removing Objects via Diffusion Models [16.58831310165623]
CLIPAwayは、CLIP埋め込みを活用して、前景要素を除外しながらバックグラウンドリージョンに集中する新しいアプローチである。
背景を優先する埋め込みを識別することで、塗装精度と品質を向上させる。
特別なトレーニングデータセットや高価な手作業によるアノテーションに依存する他の方法とは異なり、CLIPAwayは柔軟なプラグイン・アンド・プレイソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-13T17:50:28Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
DiffUHaulと呼ばれるオブジェクトドラッグタスクのためのトレーニング不要な手法を提案する。
まず、各認知段階に注意マスキングを適用して、各生成を異なるオブジェクトにまたがってよりゆがみやすくする。
初期のデノナイジングステップでは、ソース画像とターゲット画像の注意特徴を補間して、新しいレイアウトを元の外観とスムーズに融合させる。
論文 参考訳(メタデータ) (2024-06-03T17:59:53Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
本稿では,低照度画像強調問題に対処する拡散型フレームワークについて検討する。
我々は、その固有のODE-軌道の正規化を提唱する。
実験により,提案手法は低照度化において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-10-26T17:01:52Z) - Fearless Luminance Adaptation: A Macro-Micro-Hierarchical Transformer
for Exposure Correction [65.5397271106534]
単一のニューラルネットワークは、すべての露光問題に対処することが難しい。
特に、コンボリューションは、極端に過度に露出した領域における忠実な色や詳細を復元する能力を妨げる。
本稿では,マクロマイクロ階層変換器を提案する。マクロマイクロ階層変換器は,長距離依存を捉えるマクロアテンション,局所特徴を抽出するマイクロアテンション,粗大な修正のための階層構造を提案する。
論文 参考訳(メタデータ) (2023-09-02T09:07:36Z) - Adaptive Window Pruning for Efficient Local Motion Deblurring [81.35217764881048]
局所的な動きのぼかしは、露光中の移動物体と静止背景との混合により、実世界の写真で一般的に発生する。
既存の画像のデブロアリング手法は主にグローバルなデブロアリングに焦点を当てている。
本稿では,高解像度の局所的ぼやけた画像を適応的かつ効率的に復元することを目的とする。
論文 参考訳(メタデータ) (2023-06-25T15:24:00Z) - Take a Prior from Other Tasks for Severe Blur Removal [52.380201909782684]
知識蒸留に基づくクロスレベル特徴学習戦略
多レベルアグリゲーションとセマンティックアテンション変換によるセマンティック事前埋め込み層を効果的に統合する。
GoProやRealBlurのデータセットのような、自然な画像劣化ベンチマークと実世界の画像の実験は、我々の方法の有効性と能力を実証している。
論文 参考訳(メタデータ) (2023-02-14T08:30:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。