CSSDH: An Ontology for Social Determinants of Health to Operational Continuity of Care Data Interoperability
- URL: http://arxiv.org/abs/2412.09223v1
- Date: Thu, 12 Dec 2024 12:25:33 GMT
- Title: CSSDH: An Ontology for Social Determinants of Health to Operational Continuity of Care Data Interoperability
- Authors: Subhashis Das, Debashis Naskar, Sara Rodriguez Gonzalez,
- Abstract summary: We propose an integrated ontological model, the Common Semantic Data Model for Social Determinants of Health (CSSDH)
CSSDH aims to achieve interoperability within the Continuity of Care Network.
- Score: 0.0
- License:
- Abstract: The rise of digital platforms has led to an increasing reliance on technology-driven, home-based healthcare solutions, enabling individuals to monitor their health and share information with healthcare professionals as needed. However, creating an efficient care plan management system requires more than just analyzing hospital summaries and Electronic Health Records (EHRs). Factors such as individual user needs and social determinants of health, including living conditions and the flow of healthcare information between different settings, must also be considered. Challenges in this complex healthcare network involve schema diversity (in EHRs, personal health records, etc.) and terminology diversity (e.g., ICD, SNOMED-CT) across ancillary healthcare operations. Establishing interoperability among various systems and applications is crucial, with the European Interoperability Framework (EIF) emphasizing the need for patient-centric access and control of healthcare data. In this paper, we propose an integrated ontological model, the Common Semantic Data Model for Social Determinants of Health (CSSDH), by combining ISO/DIS 13940:2024 ContSys with WHO Social Determinants of Health. CSSDH aims to achieve interoperability within the Continuity of Care Network.
Related papers
- CSSDM Ontology to Enable Continuity of Care Data Interoperability [0.0]
We present a methodology for extracting, transforming, and loading data using a Common Semantic Standardized Data Model (CSSDM) to create personalized healthcare knowledge graph (KG)
This approach promotes a novel form of collaboration between companies developing health information systems and cloud-enabled health services.
arXiv Detail & Related papers (2025-01-17T12:48:48Z) - HAPI-FHIR Server Implementation to Enhancing Interoperability among
Primary Care Health Information Systems in Sri Lanka: Review of the Technical
Use Case [0.0]
This review underscores the vital role of interoperability in digital health, advocating for a standardized framework.
It focuses on implementing a Fast Healthcare Resources (FHIR) server, addressing technical, semantic, and process challenges.
arXiv Detail & Related papers (2024-02-05T09:48:46Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Systematic Design and Evaluation of Social Determinants of Health
Ontology (SDoHO) [19.90090257979115]
Social determinants of health (SDoH) have a significant impact on health outcomes and well-being.
We propose an SDoH ontology (SDoHO) which represents fundamental SDoH factors and their relationships in a standardized and measurable way.
arXiv Detail & Related papers (2022-12-04T22:23:30Z) - Reliable and Resilient AI and IoT-based Personalised Healthcare
Services: A Survey [1.581123237785583]
This paper conducts a comprehensive survey on personalized healthcare services.
We first present an overview of key requirements of comprehensive personalized healthcare services in modern healthcare Internet of Things (HIoT)
Second, we explored a fundamental three-layer architecture for IoT-based healthcare systems using AI and non-AI-based approaches.
Third, we highlighted different security threats against each layer of IoT architecture along with the possible AI and non-AI-based solutions.
arXiv Detail & Related papers (2022-08-29T23:14:02Z) - User-Centric Health Data Using Self-sovereign Identities [69.50862982117127]
This article presents the potential use of the issuers Self-Sovereign Identities (SSI) and Distributed Ledger Technologies (DLT) to improve the privacy and control of health data.
The paper lists the prominent use cases of decentralized identities in the health area, and discusses an effective blockchain-based architecture.
arXiv Detail & Related papers (2021-07-26T17:09:52Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - CPAS: the UK's National Machine Learning-based Hospital Capacity
Planning System for COVID-19 [111.69190108272133]
The coronavirus disease 2019 poses the threat of overwhelming healthcare systems with unprecedented demands for intensive care resources.
We developed the COVID-19 Capacity Planning and Analysis System (CPAS) - a machine learning-based system for hospital resource planning.
CPAS is one of the first machine learning-based systems to be deployed in hospitals on a national scale to address the COVID-19 pandemic.
arXiv Detail & Related papers (2020-07-27T19:39:13Z) - COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [70.08786840301435]
We propose CrOss-Modal PseudO-SiamEse network (COMPOSE) to address these challenges for patient-trial matching.
Experiment results show COMPOSE can reach 98.0% AUC on patient-criteria matching and 83.7% accuracy on patient-trial matching.
arXiv Detail & Related papers (2020-06-15T21:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.